24-Port or 48-Port 10/100 + 4-Port Gigabit Switch with WebView

Model: SRW224G4, SRW248G4
Copyright and Trademarks

Specifications are subject to change without notice. Linksys is a registered trademark or trademark of Cisco Systems, Inc. and/or its affiliates in the U.S. and certain other countries. Copyright © 2006 Cisco Systems, Inc. All rights reserved. Other brands and product names are trademarks or registered trademarks of their respective holders.

WARNING: This product contains chemicals, including lead, known to the State of California to cause cancer, and birth defects or other reproductive harm. *Wash hands after handling.*

How to Use this User Guide

The User Guide to the WebView Switches has been designed to make understanding networking with the switch easier than ever. Look for the following items when reading this User Guide:

- This checkmark means there is a note of interest and is something you should pay special attention to while using the Switch.

- This exclamation point means there is a caution or warning and is something that could damage your property or the Switch.

- This question mark provides you with a reminder about something you might need to do while using the Switch.

In addition to these symbols, there are definitions for technical terms that are presented like this:

word: definition.

Also, each figure (diagram, screenshot, or other image) is provided with a figure number and description, like this:

Figure 0-1: Sample Figure Description

Figure numbers and descriptions can also be found in the “List of Figures” section.
Table of Contents

Chapter 1: Introduction 1
 - Welcome 1
 - What’s in this User Guide? 2

Chapter 2: Getting to Know the Switch 3
 - Front Panel 3
 - The Back Panel 6

Chapter 3: Connecting the Switch 7
 - Overview 7
 - Before You Install the Switch... 8
 - Placement Options 9
 - Connecting the Switch 10

Chapter 4: Using the Console Interface for Configuration 11
 - Overview 11
 - Configuring the HyperTerminal Application 11
 - Connecting to the Switch through a Telnet Session 12
 - Configuring the Switch through the Console Interface 13

Chapter 5: Using the Web-based Utility for Configuration 25
 - Overview 25
 - Accessing the Web-based Utility 25
 - Setup Tab - Summary 26
 - Setup Tab - Network Settings 27
 - Setup Tab - Time 28
 - Port Management Tab - Port Settings 29
 - Port Management Tab - Link Aggregation 32
 - Port Management Tab - LACP 33
 - Port Management Tab - PVE Mapping 34
 - VLAN Management Tab - Create VLAN 34
 - VLAN Management Tab - Port Setting 35
 - VLAN Management Tab - Port to VLAN 36
 - VLAN Management Tab - VLAN to Ports 37
 - VLAN Management Tab - GVRP 38
 - Statistics Tab - RMON Statistics 39
<table>
<thead>
<tr>
<th>Feature</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Statistics Tab - RMON History</td>
<td>40</td>
</tr>
<tr>
<td>Statistics Tab - RMON Alarm</td>
<td>42</td>
</tr>
<tr>
<td>Statistics Tab - RMON Events</td>
<td>44</td>
</tr>
<tr>
<td>Statistics Tab - Port Utilization</td>
<td>45</td>
</tr>
<tr>
<td>Statistics Tab - 802.1x Statistics</td>
<td>45</td>
</tr>
<tr>
<td>Statistics Tab - GVRP Statistics</td>
<td>46</td>
</tr>
<tr>
<td>ACL Tab - MAC Based ACL</td>
<td>47</td>
</tr>
<tr>
<td>Security Tab - ACL Binding</td>
<td>47</td>
</tr>
<tr>
<td>Security Tab - RADIUS</td>
<td>48</td>
</tr>
<tr>
<td>Security Tab - TACACS+</td>
<td>49</td>
</tr>
<tr>
<td>Security Tab - 802.1x Settings</td>
<td>50</td>
</tr>
<tr>
<td>Security Tab - Port Security</td>
<td>51</td>
</tr>
<tr>
<td>Security Tab - Multiple Hosts</td>
<td>52</td>
</tr>
<tr>
<td>Security Tab - Storm Control</td>
<td>53</td>
</tr>
<tr>
<td>QoS</td>
<td>53</td>
</tr>
<tr>
<td>QoS Tab - CoS Settings</td>
<td>54</td>
</tr>
<tr>
<td>QoS Tab - Queue Settings</td>
<td>55</td>
</tr>
<tr>
<td>QoS Tab - DSCP Setting</td>
<td>55</td>
</tr>
<tr>
<td>QoS Tab - Bandwidth</td>
<td>56</td>
</tr>
<tr>
<td>QoS Tab - Basic Mode</td>
<td>57</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>57</td>
</tr>
<tr>
<td>Spanning Tree Tab - STP Status</td>
<td>58</td>
</tr>
<tr>
<td>Spanning Tree Tab - Global STP</td>
<td>59</td>
</tr>
<tr>
<td>Spanning Tree Tab - STP Port Settings</td>
<td>60</td>
</tr>
<tr>
<td>Spanning Tree Tab - RSTP Port Settings</td>
<td>61</td>
</tr>
<tr>
<td>Spanning Tree Tab - MSTP Properties</td>
<td>63</td>
</tr>
<tr>
<td>Spanning Tree Tab - MSTP Instance Settings</td>
<td>63</td>
</tr>
<tr>
<td>Spanning Tree Tab - MSTP Interface Settings</td>
<td>64</td>
</tr>
<tr>
<td>Multicast Tab - IGMP Snooping</td>
<td>65</td>
</tr>
<tr>
<td>Multicast Tab - Bridge Multicast</td>
<td>66</td>
</tr>
<tr>
<td>Multicast Tab - Bridge Multicast Forward All</td>
<td>67</td>
</tr>
<tr>
<td>SNMP Tab - Global Parameters</td>
<td>68</td>
</tr>
<tr>
<td>SNMP Tab - Views</td>
<td>68</td>
</tr>
<tr>
<td>SNMP Tab - Group Profile</td>
<td>69</td>
</tr>
<tr>
<td>SNMP Tab - Group Membership</td>
<td>70</td>
</tr>
<tr>
<td>SNMP Tab - Communities</td>
<td>71</td>
</tr>
<tr>
<td>Section</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>SNMP Tab - Notification Filter</td>
<td>72</td>
</tr>
<tr>
<td>SNMP Tab - Notification Recipient</td>
<td>73</td>
</tr>
<tr>
<td>Admin Tab - User Authentication</td>
<td>74</td>
</tr>
<tr>
<td>Admin Tab - Static Address</td>
<td>75</td>
</tr>
<tr>
<td>Admin Tab - Dynamic Address</td>
<td>76</td>
</tr>
<tr>
<td>Admin Tab - Logging</td>
<td>77</td>
</tr>
<tr>
<td>Admin Tab - Port Mirroring</td>
<td>78</td>
</tr>
<tr>
<td>Admin Tab - Cable Test</td>
<td>78</td>
</tr>
<tr>
<td>Admin Tab - Save Configuration</td>
<td>79</td>
</tr>
<tr>
<td>Admin Tab - Firmware Upgrade</td>
<td>80</td>
</tr>
<tr>
<td>Admin Tab - Reboot</td>
<td>80</td>
</tr>
<tr>
<td>Admin Tab - Factory Defaults</td>
<td>81</td>
</tr>
<tr>
<td>Admin Tab - Server Logs</td>
<td>81</td>
</tr>
<tr>
<td>Admin Tab - Memory Logs</td>
<td>82</td>
</tr>
<tr>
<td>Admin Tab - Flash Logs</td>
<td>82</td>
</tr>
<tr>
<td>Appendix A: About Gigabit Ethernet and Fiber Optic Cabling</td>
<td>83</td>
</tr>
<tr>
<td>Gigabit Ethernet</td>
<td>83</td>
</tr>
<tr>
<td>Fiber Optic Cabling</td>
<td>83</td>
</tr>
<tr>
<td>Appendix B: Windows Help</td>
<td>84</td>
</tr>
<tr>
<td>Appendix C: Downloading using Xmodem</td>
<td>85</td>
</tr>
<tr>
<td>Startup Menu Procedures</td>
<td>85</td>
</tr>
<tr>
<td>Appendix D: Glossary</td>
<td>87</td>
</tr>
<tr>
<td>Appendix E: Specifications</td>
<td>94</td>
</tr>
<tr>
<td>Appendix F: Warranty Information</td>
<td>98</td>
</tr>
<tr>
<td>Appendix G: Regulatory Information</td>
<td>99</td>
</tr>
<tr>
<td>Appendix H: Contact Information</td>
<td>105</td>
</tr>
</tbody>
</table>
List of Figures

Figure 2-1: Front Panel of the SRW248G4 3
Figure 2-2: Front Panel of the SRW224G4 5
Figure 2-3: Back Panel of the SRW248G4 6
Figure 2-4: Back Panel of the SRW224G4 6
Figure 3-1: Typical Network Configuration for the SRW224G4 7
Figure 3-2: Attach the Brackets to the Switch 9
Figure 3-3: Mount the Switch in the Rack 9
Figure 4-1: Finding HyperTerminal 11
Figure 4-2: Connection Description 11
Figure 4-3: Connect To 11
Figure 4-4: COM1 Properties 12
Figure 4-5: Telnet Login screen 12
Figure 4-6: Switch Main Menu 13
Figure 4-7: System Configuration Menu 14
Figure 4-8: System Information Menu 15
Figure 4-9: Versions 15
Figure 4-10: General System Information 15
Figure 4-11: Management Settings Menu 16
Figure 4-12: Serial Port Configuration 16
Figure 4-13: Telnet Configuration 16
Figure 4-14: SSH Configuration 17
Figure 4-15: SSH Server Configuration 17
Figure 4-16: SSH Status 17
Figure 4-17: SSH Crypto Key Generation 18
Figure 4-18: SSH Keys Fingerprints 18
Figure 4-19: Username & Password Settings 19
Figure 4-20: Security Settings 19
Figure 4-21: SSL Certificate Generation 19
Figure 4-22: SSL Certificate
Figure 4-23: IP Configuration
Figure 4-24: IP Address Configuration
Figure 4-25: HTTP
Figure 4-26: HTTPS Configuration
Figure 4-27: Network Configuration
Figure 4-28: Ping Test
Figure 4-29: TraceRoute Test
Figure 4-30: File Management
Figure 4-31: Restore System Default Settings
Figure 4-32: Reboot System
Figure 4-33: Port Status
Figure 4-34: Port Configuration
Figure 5-1: Login Screen
Figure 5-2: Setup - Summary
Figure 5-3: Setup - Network Settings
Figure 5-4: Setup - Time
Figure 5-5: Port Management - Port Settings
Figure 5-6: Port Settings - Port Configuration Detail
Figure 5-7: Port Management - Link Aggregation
Figure 5-8: Link Aggregation - Link Aggregation Detail
Figure 5-9: Port Management - LACP
Figure 5-10: Port Management - PVE Mapping
Figure 5-11: VLAN Management - Create VLAN
Figure 5-12: VLAN Management - Port Setting
Figure 5-13: VLAN Management - Port to VLAN
Figure 5-14: VLAN Management - VLAN to Ports
Figure 5-15: VLAN to Ports - Join VLAN
Figure 5-16: VLAN Management - GVRP
Figure 5-17: Statistics - RMON Statistics
Figure 5-48: Multicast - Bridge Multicast
Figure 5-49: Multicast - Bridge Multicast Forward All
Figure 5-50: SNMP - Global Parameters
Figure 5-51: SNMP - Views
Figure 5-52: SNMP - Group Profile
Figure 5-53: SNMP - Group Membership
Figure 5-54: SNMP - Communities
Figure 5-55: SNMP - Notification Filter
Figure 5-56: SNMP - Notification Recipient
Figure 5-57: Admin - User Authentication
Figure 5-58: Admin - Static Address
Figure 5-59: Admin - Dynamic Address
Figure 5-60: Admin - Logging
Figure 5-61: Admin - Port Mirroring
Figure 5-62: Admin - Cable Test
Figure 5-63: Admin - Save Configuration
Figure 5-64: Admin - Firmware Upgrade
Figure 5-65: Admin - Reboot
Figure 5-66: Admin - Factory Defaults
Figure 5-67: Admin - Server Logs
Figure 5-68: Admin - Memory Logs
Figure 5-69: Admin - Flash Logs
Figure C-1: Auto-Boot Message
Figure C-2: Startup Menu
Figure C-3: Send File
Figure C-4: Download
Welcome
The Linksys WebView Managed Switch allows you to expand your network securely. Configuration of the switch is secured using SSL for Web access. User control is secured using 802.1x security using a RADIUS authentication mechanism and can also be controlled using MAC-based filtering.

Extensive QoS features make the solution ideal for real-time applications like Voice and Video. The 4 priority queues together with the Weighted Round Robin and Strict Priority scheduling techniques facilitate efficient coexistence of real-time traffic with data traffic allowing them each to meet their QoS needs. Individual users or applications can be prioritized above others using various Class of Service options - by port, layer 2 priority (802.1p), and layer 3 priority (TOS or DSCP). Intelligent Broadcast, and Multicast storm control minimizes and contain the effect of these types of traffic on regular traffic. IGMP Snooping limits bandwidth-intensive video traffic to only the requestors without flooding to all users. Incoming traffic can be policed and outgoing traffic can be shaped allowing you to control network access and traffic flow.

There are features that allow you to expand and grow your network of switches. Link aggregation allows multiple high-bandwidth trunks between switches to be setup. This also provides a level of reliability in that the system continues to operate if one of the links break. Spanning Tree (STP), Fast Spanning Tree, Multiple Spanning Tree (MSTP) and Rapid Spanning Tree (RSTP) allow you to build a mesh of switches increasing the availability of the system.

The rich management functionality of the WebView switches includes SNMP, RMON, Telnet, and HTTP Management options, allowing you to flexibly integrate and manage these devices in your network.
What's in this User Guide?

This user guide covers the steps for setting up and using the Switch.

- **Chapter 1: Introduction**
 This chapter describes the Switch’s applications and this User Guide.

- **Chapter 2: Getting to Know the Switch**
 This chapter describes the physical features of the Switch.

- **Chapter 3: Connecting the Switch**
 This chapter explains how to install and connect the Switch.

- **Chapter 4: Using the Console Interface for Configuration**
 This chapter instructs you on how to use the Switch’s console interface when you configure the Switch.

- **Chapter 5: Using the Web-based Utility for Configuration**
 This chapter shows you how to configure the Switch using the Web-based Utility.

- **Appendix A: About Gigabit Ethernet and Fiber Optic Cabling**
 This appendix gives a general description of Gigabit Ethernet and fiber optic cabling.

- **Appendix B: Windows Help**
 This appendix describes how you can use Windows Help for instructions about networking, such as installing the TCP/IP protocol.

- **Appendix C: Downloading using Xmodem**
 This appendix describes how you can download software into the Switch using Xmodem.

- **Appendix D: Glossary**
 This appendix gives a brief glossary of terms frequently used in networking.

- **Appendix E: Specifications**
 This appendix provides the Switch’s technical specifications.

- **Appendix F: Warranty Information**
 This appendix supplies the Switch’s warranty information.

- **Appendix G: Regulatory Information**
 This appendix supplies the Switch’s regulatory information.

- **Appendix H: Contact Information**
 This appendix provides contact information for a variety of Linksys resources, including Technical Support.
Chapter 2: Getting to Know the Switch

Front Panel

The Switch's LEDs and ports are located on the front panel.

SRW248G4

![Image of SRW248G4 Switch]

Figure 2-1: Front Panel of the SRW248G4

LEDs

PWR
Green. The PWR LED lights up to indicate that the Switch is powered on.

Link/Act (1-48)
Green. The LED lights up green to indicate a functional 10/100Mbps network link through the corresponding port (1 through 48) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.

Link/Act (G1-G4)
Green. The LED lights up green to indicate a functional 10/100Mbps network link through the corresponding port (G1 through G4) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.

Orange. The LED lights up orange to indicate a 1000Mbps connection on the corresponding port (G1 through G4) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.
Ports

1-48
The Switch is equipped with 48 auto-sensing Ethernet network ports, which use RJ-45 connectors. The Fast Ethernet ports support network speeds of 10Mbps or 100Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps or 100Mbps), and adjust its speed and duplex accordingly.

G1-G4
The Switch is equipped with 4 auto-sensing Gigabit Ethernet network ports, which use RJ-45 connectors. The Gigabit Ethernet ports support network speeds of 10Mbps, 100Mbps, or 1000Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps, 100Mbps, or 1000Mbps), and adjust its speed and duplex accordingly.

miniGBIC 1-2
The miniGBIC (gigabit interface converter) port is a connection point for a miniGBIC expansion module, so the Switch can be uplinked via fiber to another switch. The MiniGBIC port provides a link to a high-speed network segment or individual workstation at speeds of up to 1000Mbps.

Use the Linksys MGBT1, MGBSX1, or MGBLH1 miniGBIC modules with the Switch. The MGBSX1 and the MGBLH1 require fiber cabling with LC connectors, while the MGBT1 requires a Category 5e Ethernet cable with an RJ-45 connector.

NOTE: MiniGBIC 1 is shared with G3 and miniGBIC 2 is shared with G4. If miniGBIC 1 is used, than G3 on the switch cannot be used. If miniGBIC 2 is used, than G4 on the switch cannot be used.
WEBVIEW Switches

SRW224G4

Figure 2-2: Front Panel of the SRW224G4

LEDs

PWR
Green. The **PWR** LED lights up to indicate that the Switch is powered on.

Link/Act (1-24)
Green. The LED lights up green to indicate a functional 10/100Mbps network link through the corresponding port (1 through 16) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.

Link/Act (G1-G4)
Green. The LED lights up green to indicate a functional 10/100Mbps network link through the corresponding port (G1 through G4) with an attached device. It flashes to indicate that the Switch is actively sending or receiving data over that port.

1000Mbps (G1-G4)
Orange. The LED lights up orange to indicate a 1000Mbps connection on the corresponding port (G1 through G4) with an attached device.

Ports

1-24
The Switch is equipped with 24 auto-sensing, Ethernet network ports, which use RJ-45 connectors. The Fast Ethernet ports support network speeds of 10Mbps, 100Mbps, or 1000Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps, 100Mbps, or 1000Mbps), and adjust its speed and duplex accordingly.

G1-G4
The Switch is equipped with 4 auto-sensing Gigabit Ethernet network ports, which use RJ-45 connectors. The Gigabit Ethernet ports support network speeds of 10Mbps, 100Mbps, or 1000Mbps. They can operate in half and full-duplex modes. Auto-sensing technology enables each port to automatically detect the speed of the device connected to it (10Mbps, 100Mbps, or 1000Mbps), and adjust its speed and duplex accordingly.
miniGBIC 1-2

The miniGBIC (gigabit interface converter) port is a connection point for a miniGBIC expansion module, so the Switch can be uplinked via fiber to another switch. The MiniGBIC port provides a link to a high-speed network segment or individual workstation at speeds of up to 1000Mbps.

Use the LinkSys MGBT1, MGBSX1, or MGBLH1 miniGBIC modules with the Switch. The MGBSX1 and the MGBLH1 require fiber cabling with LC connectors, while the MGBT1 requires a Category 5e Ethernet cable with an RJ-45 connector.

The Back Panel

The power port is located on the back panel of the Switch.

![Figure 2-3: Back Panel of the SRW248G4](Image)

Console

The Console port is where you can connect a serial cable to a PC’s serial port for configuration using your PC’s HyperTerminal program. Refer to Chapter 4: Using the Console Interface for Configuration for more information.

Power

The Power port is where you will connect the power cord.

NOTE: MiniGBIC 1 is shared with port G3 and miniGBIC 2 is shared with port G4. If miniGBIC 1 is used, then port G3 on the switch cannot be used. If miniGBIC 2 is used, than port G4 on the switch cannot be used.

NOTE: If you need to reset the Switch, unplug the power cord from the back of the Switch. Wait a few seconds and then reconnect it.
Chapter 3: Connecting the Switch

Overview

This chapter will explain how to connect network devices to the Switch. For an example of a typical network configuration, see the application diagram shown below.

![Diagram](image)

Figure 3-1: Typical Network Configuration for the SRW224G4
When you connect your network devices, make sure you don’t exceed the maximum cabling distances, which are listed in the following table:

Table 1: Maximum Cabling Distances

<table>
<thead>
<tr>
<th>From</th>
<th>To</th>
<th>Maximum Distance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Switch</td>
<td>Switch or Hub*</td>
<td>100 meters (328 feet)</td>
</tr>
<tr>
<td>Hub</td>
<td>Hub</td>
<td>5 meters (16.4 feet)</td>
</tr>
<tr>
<td>Switch or Hub</td>
<td>Computer</td>
<td>100 meters (328 feet)</td>
</tr>
</tbody>
</table>

*A hub refers to any type of 100Mbps hub, including regular hubs and stackable hubs. A 10Mbps hub connected to another 10Mbps hub can span up to 100 meters (328 feet).

Before You Install the Switch...

When you choose a location for the Switch, observe the following guidelines:

- Make sure that the Switch will be accessible and that the cables can be easily connected.
- Keep cabling away from sources of electrical noise, power lines, and fluorescent lighting fixtures.
- Position the Switch away from water and moisture sources.
- To ensure adequate air flow around the Switch, be sure to provide a minimum clearance of two inches (50 mm).
- Do not stack free-standing Switches more than four units high.
Placement Options

Before connecting cables to the Switch, first you will physically install the Switch. Either set the Switch on its four rubber feet for desktop placement or mount the Switch in a standard-sized, 19-inch wide, 1U high rack for rack-mount placement.

Desktop Placement

1. Attach the rubber feet to the recessed areas on the bottom of the Switch.
2. Place the Switch on a desktop near an AC power source.
3. Keep enough ventilation space for the Switch and check the environmental restrictions mentioned in the specifications.
4. Proceed to the section, “Connecting the Switch.”

Rack-Mount Placement

To mount the Switch in any standard-sized, 19-inch wide, 1U high rack, follow these instructions:

1. Place the Switch on a hard flat surface with the front panel facing you.
2. Attach a rack-mount bracket to one side of the Switch with the supplied screws. Then attach the other bracket to the other side.
3. Make sure the brackets are properly attached to the Switch.
4. Use the appropriate screws (not included) to securely attach the brackets to your rack.

Proceed to the section, “Connecting the Switch.”
Connecting the Switch

To connect network devices to the Switch, follow these instructions:

1. Make sure all the devices you will connect to the Switch are powered off.

2. For 10/100Mbps devices, connect a Category 5 Ethernet network cable to one of the numbered ports on the Switch. For a 1000Mbps device, connect a Category 5e Ethernet network cable to one of the numbered ports on the Switch.

3. Connect the other end to a PC or other network device.

4. Repeat steps 2 and 3 to connect additional devices.

5. If you are using the miniGBIC port, then connect the miniGBIC module to the miniGBIC port. For detailed instructions, refer to the module’s documentation.

6. If you will use the Switch’s console interface to configure the Switch, then connect the supplied serial cable to the Switch’s Console port, and tighten the captive retaining screws. Connect the other end to your PC’s serial port. (This PC must be running the VT100 terminal emulation software, such as HyperTerminal.)

7. Connect the supplied power cord to the Switch’s power port, and plug the other end into an electrical outlet.

IMPORTANT: Make sure you use the power cord that is supplied with the Switch. Use of a different power cord could damage the Switch.

8. Power on the network devices connected to the Switch. Each active port’s corresponding Link/Act LED will light up on the Switch. If a port has an active Gigabit connection, then its corresponding Gigabit LED will also light up.

NOTE: If you need to reset the Switch, unplug the power cord from the back of the Switch. Wait a few seconds and then reconnect it.

If you will use the Switch’s console interface to configure the Switch, proceed to Chapter 4: Using the Console Interface for Configuration for directions.

If you will use the Switch’s Web-based Utility to configure the Switch, proceed to Chapter 5: Using the Web-based Utility for Configuration.
Chapter 4: Using the Console Interface for Configuration

Overview

The Switch features a menu-driven console interface for basic configuration of the Switch and management of your network. The Switch can be configured using CLI through the console interface or through a telnet connection. This chapter describes console interface configuration. Configuration can also be performed through the web utility, which is covered in the next chapter.

Configuring the HyperTerminal Application

Before you use the console interface, you will need to configure the HyperTerminal application on your PC.

1. Click the Start button. Select Programs and choose Accessories. Select Communications. Select HyperTerminal from the options listed in this menu.
2. On the Connection Description screen, enter a name for this connection. In the example, the name of connection is SRW224G4. Select an icon for the application. Then, click the OK button.
3. On the Connect To screen, select a port to communicate with the Switch: COM1, COM2, or TCP/IP.
4. Set the serial port settings as follows:
 - Bits per second: **38400**
 - Data bits: **8**
 - Parity: **None**
 - Stop bits: **1**
 - Flow control: **None**

 Then, click the **OK** button.

Connecting to the Switch through a Telnet Session

Open a command line editor and enter `telnet 192.168.1.254`. Then, press the **Enter** key.

The Login screen will now appear. The first time you open the CLI interface, select **Edit** and hit Enter. Enter **admin** in the User Name field. Leave the Password field blank.

Press the **Esc** button and you will return to the login screen. Use the right arrow button to navigate to **Execute** and press the **Enter** button to enter the CLI interface.
Chapter 4: Using the Console Interface for Configuration

Configuring the Switch through the Console Interface

The console screens consist of a series of menus. Each menu has several options, which are listed vertically. You select a menu option when you highlight it; pressing the Enter key activates the highlighted option.

To navigate through the menus and actions of the console interface, use the up or down arrow keys to move up or down, and use the left or right arrow keys to move left or right. Use the Enter key to select a menu option, and use the Esc key to return to the previous selection. Menu options and any values entered or present will be highlighted. The bottom of the screen lists the actions available.

Switch Main Menu

The System Main Menu screen displays these choices:

1. System Configuration Information Menu
2. Port Status
3. Port Configuration
4. Help
0. Logout

Figure 4-6: Switch Main Menu
System Configuration Menu

On the System Configuration Menu screen, you have these choices:

1. System Information
2. Management Settings
3. User & Password Settings
4. Security Settings
5. IP Configuration
6. File Management
7. Restore System Default Settings
8. Reboot System
0. Back to main menu

Figure 4-7: System Configuration Menu
System Information

Using this screen, you can check the Switch's firmware versions and general system information.

Versions

The Versions screen displays the Switch's boot, software, and hardware firmware versions.

General System Information

The General System Information screen displays the Switch's description, System Up Time, System MAC Address, System Contact, System Name, and System Location.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.
Chapter 4: Using the Console Interface for Configuration
Configuring the Switch through the Console Interface

WebView Switches

Management Settings

From the Management Settings screen, you can set Serial Port Session Configuration, Telnet Session Configuration, or Secure Telnet (SSH) Configuration.

Serial Port Configuration

On the Serial Port Configuration screen, the Switch’s baud rate is displayed.

Select **Edit** and press the **Enter** key to make changes. Toggle to the desired speed and when your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.

Telnet Configuration

On the Telnet Configuration screen, the time-out is displayed. The value is entered in seconds. If you do not want the Telnet session to timeout, you may enter a value of 0 sec.

Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.
WebView Switches

Chapter 4: Using the Console Interface for Configuration
Configuring the Switch through the Console Interface

SSH Configuration

On the SSH Configuration screen, you can select SSH Server Configuration, SSH Server Status, SSH Crypto Key Generation, and SSH Keys Fingerprints.

SSH Server Configuration

On the SSH Server Configuration screen, the SSH Server can be enabled or disabled by navigating to the SSH Server option and using the SPACE bar to toggle the option. The SSH Server Port can be modified by entering in the value.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

SSH Status

The SSH Status screen displays whether the SSH Server is enabled, the RSA and DSA key status, and any open SSH sessions.

Select Refresh to update the screen if necessary. To exit, select Quit and press the Enter key.
WebView Switches

SSH Crypto Key Generation

On the SSH Crypto Key Generation screen, the SSH Public Key Algorithm can be toggled between RSA and DSA using the **SPACE** bar to toggle the option. The SSH Public Key Length cannot be modified.

Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.

SSH Keys Fingerprints

On the SSH Keys Fingerprints screen, the RSA and DSA keys will be displayed if they have been generated. Select **Refresh** to update the screen if necessary. To exit, select **Quit** and press the **Enter** key.
WebView Switches

Username & Password Settings

From this screen, you can administer the user names and passwords of those accessing the Switch.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

NOTE: The Username & Password Settings screen can also be used to set passwords for other users.

Security Settings

The Security Settings screen enables you to configure security settings on the Switch, as well as generate and display the certificate.

SSL Certificate Generation

Use the Certificate Generation screen to specify a device-generated certificate.

The following fields are specified:

Public Key Length - Specifies the SSL RSA key length. (Range: 512 - 2048)

Organization Name - Specifies the organization name. (Range: 1 - 64)

Locality or City Name - Specifies the location or city name. (Range: 1 - 64)

State or Province Name - Specifies the state or province name. (Range: 1 - 64)

Country Name - Specifies the country name. (Range: 2 - 2)

Validity Term - Specifies number of days certification is valid. (Range: 30 - 3650)
Show Certificate

Use the Show Certificate screen to display the internal certificate.

Disable Active Management Profile

Selecting this option will prompt you to confirm that you want to disable the Active Management Profile.

NOTE: This setting has no effect when Management Access Rules are not defined.

IP Configuration

The IP Configuration screen displays these choices: the Switch’s IP Address Settings, HTTP, HTTPS Configuration and Network Configuration.
IP Address Configuration

The Switch’s IP information is displayed here.

IP Address. The IP Address of the Switch is displayed. (The default IP address is **192.168.1.254**.) Verify that the address you enter is correct and does not conflict with another device on the network.

Subnet Mask. The subnet mask of the Switch is displayed.

Default Gateway. The IP address of your network’s default gateway is displayed.

Management VLAN. The VLAN ID number is displayed.

DHCP client. The status of the DHCP client is displayed. If you want the Switch to be a DHCP client, then select **ENABLE**. If you want to assign an static IP address to the Switch, then enter the IP settings and select **DISABLE**.

Select **Edit** to make changes. When your changes are complete, press the **Esc** key to return to the Action menu, and select **Save** to save your changes.

HTTP

The HTTP screen displays the status and port number of the HTTP Server.

Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.

HTTPS Configuration

Use the HTTPS Configuration screen to configure HTTPS settings. You can enable or disable the HTTPS server and configure the port on which the session is enabled.

Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.
Network Configuration

The Network Configuration screen offers a choice of two tests, Ping and TraceRoute.

Ping

The Ping screen displays the IP address of the location you want to contact.

Select Edit to change the IP address, and select Execute to begin the ping test.

After the ping test is complete, the Ping screen displays the IP address, status, and statistics of the ping test.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.

TraceRoute

The TraceRoute screen displays the IP address of the address whose route you want to trace.

Select Edit to change the IP address, and select Execute to begin the traceroute test.

After the traceroute test is complete, the TraceRoute screen displays the IP address, status, and statistics of the traceroute test.

Select Edit and press the Enter key to make changes. When your changes are complete, press the Esc key to return to the Action menu. Select Save and press the Enter key to save your changes. To exit, select Quit and press the Enter key.
Chapter 4: Using the Console Interface for Configuration
Configuring the Switch through the Console Interface

File Management

The File Management screen allows you to upload or download files, such as the startup configuration, boot, or image file, using a TFTP server.

Select Edit to change the settings. When your changes are complete, press the Esc key to return to the Action menu, and select Execute to upload or download the designated file.

If you are downloading a new boot image, please follow these steps:

1. Download the new boot code. DO NOT RESET THE DEVICE!
2. Download the new software image.
3. Reset the device now.

NOTE: When downloading a configuration file, be sure that it is a valid configuration file. If you have edited the file, ensure that only valid entries have been configured.

Restore System Default Settings

To restore the Switch back to the factory default settings, select Restore System Default Settings and press the Enter key. You will be asked if you want to continue. Press the y key to restore the Switch’s default settings, or press the n key to cancel.

Reboot System

Select Reboot System and press the Enter key if you want to restart the Switch. You will be asked if you want to continue. Press the y key to reboot the Switch, or press the n key to cancel. After the Switch has rebooted, the Switch Main Menu screen will appear.

Back to main menu

Select Back to main menu and press the Enter key if you want to return to the Switch Main Menu screen.
Port Status

On the Switch Main Menu screen, select **Port Status** and press the **Enter** key if you want to view the status information for the Switch’s ports.

The Port Status screen displays the port numbers, their status, Link status, speed and duplex mode, and status of flow control, which is the flow of packet transmissions.

If you want to change any settings for a port, you must use the Port Configuration screen.

Port Configuration

On the Switch Main Menu screen, select **Port Configuration** and press the **Enter** key if you want to configure the Switch’s ports.

The Port Configuration screen displays the port numbers, their status, auto-negotiation status, speed and duplex mode, and status of flow control, which is the flow of packet transmissions.

Select **Edit** and press the **Enter** key to make changes. When your changes are complete, press the **Esc** key to return to the Action menu. Select **Save** and press the **Enter** key to save your changes. To exit, select **Quit** and press the **Enter** key.

Help

Select Help and press the Enter key if you want to view the help information. This screen explains how to navigate the various screens of the console interface.
Chapter 5: Using the Web-based Utility for Configuration

Overview

This chapter describes the features included in the Web-based Utility. All of the features shown in this chapter, unless specifically identified, are included in the all of Fast Ethernet switches. Additional features for specific switches are noted.

Accessing the Web-based Utility

NOTE: The Web-based Utility is optimized for viewing with a screen resolution of 1024 x 768. Internet Explorer version 5.5 or above is recommended.

Open your web browser and enter 192.168.1.254 into the Address field. Press the Enter key and the login screen will appear.

NOTE: The default IP address of the device is 192.168.1.254. If you have modified this address, enter the correct IP address. The device should be on the same subnet as the management station used to configure the device.

The first time you open the Web-based Utility, enter admin in the User Name field, and leave the Password field blank. Click the OK button. For security purposes, it is recommended that later you set a password from the System Password screen.

The first screen that appears is the Setup Summary screen. Twelve main tabs are accessible from the Web-based Utility: Setup, Port Management, VLAN Management, Statistics, ACL, Security, QoS (Quality of Service), Spanning Tree, Multicast, SNMP, Admin, and Logout. Click one of the main tabs to view additional tabs.

The LEDs on the Setup Summary screen display status information about their corresponding ports. A green LED indicates a connection, while a grey LED indicates no connection. An orange LED indicates the port has been closed down by the administrator. When you click a port's LED, the statistics for that port are displayed.

NOTE: After configuring values using the Web-based Utility, you may be required to refresh the page to see the updated configuration.

NOTE: The LEDs displayed in the Web-based Utility are not the same as the LEDs on the front panel of the Switch. The front panel LEDs display different status information, which is described in Chapter 2: Getting to Know the Switch.
Setup Tab - Summary

The Summary screen provides device and system information about the Switch.

Device Information

System Name. Displays the name for the Switch, if one has been entered on the Setup - Network Settings tab.

IP Address. The IP address of the Switch is displayed here (configurable from Setup - Network Settings tab).

Subnet Mask. The Subnet Mask of the Switch is displayed here (configurable from Setup - Network Settings tab).

DNS Servers. The DNS Servers are displayed here (configurable from Setup - Network Settings tab).

Default Gateway. The Default Gateway is displayed here (configurable from Setup - Network Settings tab).

Address Mode. Indicates whether the Switch is configured with a Static or Dynamic IP address (configurable from Setup - Network Settings tab).

Base MAC Address. This is the MAC address of the Switch.

System Information

Serial Number. The product’s Serial Number is displayed here.

Model Name. This is the model number and name of the Switch.

Hardware Version. The version number of the Switch’s hardware is displayed here.

Boot Version. Indicates the system boot version currently running on the device.

Firmware Version. The Firmware (software) version number is displayed here.

System Location. The system name is displayed here (configurable from Setup - Network Settings tab).

System Contact. The contact person for this Switch is displayed here (configurable from Setup - Network Settings tab).

System Up Time. This displays the amount of time that has elapsed since the Switch was last reset.

Current Time. The system time is displayed here (configurable from Setup - Time tab).
Setup Tab - Network Settings

The Network Settings screen allows you to assign DHCP or static IP settings to interfaces and assign default gateways.

Identification

System Name. This field allows you to assign a system name.
System Location. This field is used for entering a description of where the Switch is located, such as 3rd floor.
System Contact. Enter the administrative contact person in this field.
System Object ID. The system object identifier is displayed here.
Base MAC Address. This is the MAC address of the Switch.

IP Configuration

Management VLAN. This drop-down allows you to select the Management VLAN.
IP Address Mode. This drop-down allows you to select Static or Dynamic IP address configuration.
Host Name. Enter the DHCP Host Name here.
IP Address. If using a static IP address, enter the IP address here.
Subnet Mask. If using a static IP address, enter the subnet mask of the currently configured IP address.
Default Gateway. If using a static IP address, enter the IP address of the Default Gateway.
DNS Server. Enter the primary DNS Server information.

Click the Save Settings button to save your changes or click Cancel Changes to discard the information.

NOTE: Do not use a network connection to change the Management VLAN and/or IP Address because you will be disconnected from the Switch. You should change the settings by connecting directly from your computer to the Switch using the console cable.

See "Configuring the HyperTerminal Application" in "Chapter 4: Using the Console Interface for Configuration" for details on connecting directly to the Switch. Be sure to select a COM port on the Connect To screen.

If you have difficulty connecting to the Switch after modifying the IP address and/or Management VLAN, please reconnect directly to the Switch using the console cable and verify that the settings are correct.
Setup Tab - Time

The Time screen allows you to configure the time settings for the Switch.

Set Time

Use System Time. When this option is selected, the local hardware clock is utilized.

Use SNTP Time. When this option is selected, the time is synchronized to an SNTP (Simple Network Time Protocol) server.

Local Time

Hours. The hour can be entered here.

Minutes. The minutes can be entered here.

Seconds. The seconds can be entered here.

Month. The month can be entered here.

Day. The day can be entered here.

Year. The year can be entered here.

Time Zone. Enter the difference between Greenwich Mean Time (GMT) and local time.

Daylight Saving

Daylight Saving. Select Daylight Saving to enable it on the Switch. If the Switch should use US daylight savings, then select **USA.** If the Switch should use EU daylight savings, then select **European.** If it should use another kind of daylight savings, then select **Custom** and complete the From and To fields.

Time Set Offset (1-1440). For non-US and European countries, specify the amount of time for daylight savings. The default is **60** minutes.

From. If you selected Other for the Daylight Saving setting, then enter the date and time when daylight savings begins.

To. If you selected Other for the Daylight Saving setting, then enter the date and time when daylight savings ends.
WebView Switches

Recurring. If you selected Other for the Daylight Saving setting and daylight savings has the same start and end dates and times every year, then select **Recurring.**

From. If you selected Recurring, then enter the date and time when daylight savings begins.

To. If you selected Recurring, then enter the date and time when daylight savings ends.

SNTP Servers

Server1. Enter the primary SNTP server here.

Server2. Enter a secondary SNTP server here.

SNTP Polling Interval (60-86400). The value defined here determines the amount of time (in seconds) before the Switch polls the SNTP server. The default value is every 1024 seconds (approx. 17 minutes).

Click the **Save Settings** button to save your changes or click Cancel Changes to discard the information.

Port Management Tab - Port Settings

The Port Management - Port Settings screen shows you the settings for each of the Switch's ports.

Port. The number of the port. To use an SFP module, click on the **Detail** button of the appropriate port (G1, G2).

Description. Displays a brief description of the port (can be entered by clicking on the **Detail** button).

Administrative Status. The port can be taken offline by selecting the Down option. When Up is selected, the port can be accessed normally.

Link Status. Up indicates a port has an active connection, Down indicates there is no active connection or the port has been taken offline by an Administrator.

Speed. The connection speed of the port is displayed here. The speed can be configured only when auto-negotiation is disabled on that port.

Duplex. This is the port duplex mode, Full (transmission occurs in both directions simultaneously) or Half (transmission occurs in only one direction at a time). This mode can be configured only when auto-negotiation is disabled and port speed is set to 10Mbps or 100Mbps. It cannot be configured on Link Aggregation Groups (LAGs).
WebView Switches

MDI/MDIX. This is the MDI/MDIX status of the port. The **MDI** setting is used if the port is connected to an end station. The **MDIX** setting is used if the port is connected to a hub or another switch.

Flow Control. This is the flow control status of the port. It is active when the port uses Full Duplex Mode.

Type. Displays the port type.

LAG. This indicates if the port is part of a LAG.

PVE Groups. Displays the PVE Group to which the port is configured. PVE Groups are configured on the PVE Mapping screen.

PVE Uplink. When a port is a Private VLAN Edge (PVE) port, it bypasses the Forwarding Database and forwards all unicast, multicast, and broadcast traffic to an uplink. Uplinks must be gigabit ports or LAGs.

Detail. The Detail button will open the Port Configuration Detail screen.

Port Configuration Detail screen

Port Number. The number of the port.

Description. Displays a brief description of the port (can be entered by clicking on the **Detail** button).

Port Type. This is the port type.

Admin Status. The port can be taken offline by selecting the Down option. When Up is selected, the port can be accessed normally.

Current Port Status. The current status of the port is displayed here.

Reactivate Suspended Port. If you want to reactivate a port that has been suspended, click the checkbox.

Operational Status. This indicates whether or not the port is active.

Admin Speed. Change the speed of the port here.

Current Port Speed. The current speed of the port is displayed here.

Admin Duplex. Change the duplex mode here.

Current Duplex Mode. This is the duplex mode of the port.

NOTE: All ports in the same PVE group should join the same VLAN group.
Web View Switches

Auto Negotiation. You can enable or disable the port’s Auto Negotiation feature. If using an SFP module, Auto Negotiation for the specific port should be set to Disable.

Current Auto Negotiation. This is the current setting of the port’s Auto Negotiation feature.

Admin Advertisement. Specifies the capabilities to be advertised by the port. Multiple options may be selected or Max Capability can be selected to cover all of the options. The available options are:

- **Max Capability.** Indicates that the port speeds and duplex mode settings can be accepted.
- **10 Half.** Indicates that the port is advertising a 10Mbps half duplex mode setting.
- **10 Full.** Indicates that the port is advertising a 10Mbps full duplex mode setting.
- **100 Half.** Indicates that the port is advertising a 100Mbps half duplex mode setting.
- **100 Full.** Indicates that the port is advertising a 100Mbps full duplex mode setting.
- **1000 Full.** Indicates that the port is advertising a 1000Mbps full duplex mode setting (only available on ports G1-G4).

Current Advertisement. The port advertises its capabilities to its neighbor port to begin the negotiation process. This field displays the current advertisement settings.

Neighbor Advertisement. The neighbor port (the port to which the selected interface is connected) advertises its capabilities to the port to start the negotiation process. This field displays the neighbor’s current settings.

Back Pressure. The Back Pressure feature of the selected port can be enabled or disabled.

Current Back Pressure. Displays whether Back Pressure is enabled or disabled on the currently selected port.

Flow Control. The Flow Control feature of the selected port can be enabled or disabled.

Current Flow Control. Displays whether Flow Control is enabled or disabled on the currently selected port.

MDI/MDIX. Select the Auto setting if you want the port to automatically detect the cable type. Select MDI if the port is connected to an end station. Select MDIX if the port is connected to a hub or another switch.

Current MDI/MDIX. This is the current MDI/MDIX status of the port.

PVE Group. Displays the PVE Group to which the port is configured. PVE Groups are configured on the PVE Mapping screen.

NOTE: All ports in the same PVE group should join the same VLAN group.
PVE Group Uplink. When a port is a Private VLAN Edge (PVE) port, it bypasses the Forwarding Database and forwards all unicast, multicast, and broadcast traffic to an uplink. Uplinks must be gigabit ports or LAGs.

LAG. This will indicate if a port is part of a LAG.

Click the Save Settings button to save your changes.

Port Management Tab - Link Aggregation

LAG. This indicates if the port is part of a LAG.

Description. Description for this LAG.

Admin Status. The admin status of the LAG. Up indicates that the LAG is available. Down indicates that administrator has taken the port offline. When modifying the option, be sure to click the Save Settings option.

Type. The type of LAG is displayed here.

Link Status. The link status is displayed here.

Speed. The connection speed is displayed here.

Duplex. The connection duplex is displayed here.

Flow Control. This is the flow control status of the LAG. It is active when the port uses Full Duplex Mode.

LAG Mode. Displays the LAG status, On, Off, or Not Present.

Detail button. The Detail button opens up the Link Aggregation Detail screen.

Link Aggregation Detail screen

LAG Configuration

LAG ID. The number of the selected LAG.

Description. A general description can be listed here for reference.

LACP. Indicates if the LAG is in LACP (Link Aggregation Control Protocol) mode.

LAG Type. The port types that comprise the LAG.
Administrative Status. Enables or disables traffic forwarding through the selected LAG.

Current Status. Indicates if the LAG is currently operating.

Admin Auto Negotiation. Enables or disables Auto Negotiation on the LAG. Auto-negotiation is a protocol between two link partners that enables a LAG to advertise its transmission rate, duplex mode and flow control (the flow control default is disabled) abilities to its partner.

Current Auto Negotiation. The current Auto Negotiation setting.

Admin Speed. The configured speed at which the LAG is operating.

Current LAG Speed. The current speed at which the LAG is operating.

Admin Flow Control. Enables or disables flow control or enables the auto negotiation of flow control on the LAG.

Current Flow Control. The user-designated Flow Control setting.

Select Ports

Ports. Displays the ports that are members of the selected LAG.

Port Management Tab - LACP

Aggregate ports can be linked into link-aggregation port groups. Each group is comprised of ports with the same speed, set to full-duplex operation.

Aggregated Links can be manually setup or automatically established by enabling Link Aggregation Control Protocol (LACP) on the relevant links. Aggregate ports can be linked into link-aggregation port-groups. Each group is comprised of ports with the same speed. The LACP screen contains fields for configuring LACP LAGs.

LACP System Priority. Indicates the global LACP priority value. The possible range is 1-65535. The default value is 1.

Port. Defines the port number to which timeout and priority values are assigned.

LACP Port Priority. Defines the LACP priority value for the port. The field range is 1-65535.

LACP Timeout. Administrative LACP timeout. A short or long timeout value can be selected. Long is the default.

Admin Key. A channel will only be formed between ports having the same admin key. This only applies to ports located on the same switch.

![Figure 5-9: Port Management - LACP](image-url)
Port Management Tab - PVE Mapping

Group ID. This displays the PVE group number.

Group Members. This displays the ports configured in the Group ID. The ports in the group are forwarded as configured in the PVE Uplink field.

PVE Uplink. Specifies the port on which the traffic will be forwarded to if PVE is enabled.

VLAN Management Tab - Create VLAN

The Create VLAN screen provides information and global parameters for configuring and working with VLANs.

Single VLAN

VLAN ID (2-4094). Indicates the ID number of the VLAN being configured. Up to 256 VLANs can be created. This field is used to add VLANs one at a time. To add the defined VLAN ID number, press the **Add** button.

VLAN Name. Displays the user-defined VLAN name.

VLAN Range

VLAN Range. Indicates a range of VLANs being configured. To add the defined range of VLAN ID numbers, press the **Add Range** button.

VLAN Table

The VLAN Table displays a list of all configured VLANs. The VLAN ID, VLAN Name, and status of the VLAN are displayed here. To remove a VLAN, click the **Remove** button.
VLAN Management Tab - Port Setting

The VLAN Port Settings screen provides parameters for managing ports that are part of a VLAN. The port default VLAN ID (PVID) is configured on the VLAN Port Settings screen. All untagged packets arriving to the device are tagged by the ports PVID.

Port. The port number included in the VLAN.

Mode. Indicates the port mode. Possible values are:

- **General.** The port can be tagged or untagged in any VLAN.
- **Access.** The port is untagged in a single VLAN. When a port is in Access mode, the packet types which are accepted on the port (packet type) cannot be designated. It is also not possible to enable/disable ingress filtering on an access port.
- **Trunk.** The port is tagged in all VLANs of which it is a member, except the default VLAN (which is untagged).

Acceptable Frame Type. Packet type accepted on the port. Possible values are:

- **Admit Tag Only.** Indicates that only tagged packets are accepted on the port.
- **Admit All.** Indicates that both tagged and untagged packets are accepted on the port.

PVID. Assigns a VLAN ID to untagged packets. The possible values are 2 to 4094. VLAN 4095 is defined as per standard and industry practice as the discard VLAN. Packets classified to the Discard VLAN are dropped.

Ingress Filtering. Enables or disables Ingress filtering on the port. Ingress filtering discards packets which do not include an ingress port.

LAG. Indicates the LAG to which the VLAN is defined.

NOTE: The factory default settings assign VLAN1 as the default VLAN, but the default VLAN can be changed.
VLAN Management Tab - Port to VLAN

The Port to VLAN screen contains fields for configuring ports to a VLAN. The port default VLAN ID (PVID) is configured on the Create VLAN screen. All untagged packets arriving to the device are tagged by the ports PVID.

The Port to VLAN screen contains a Port Table for VLAN parameters for each ports. Ports are assigned VLAN membership by selecting and configuring the presented configuration options.

VLAN. The VLAN number.

Access. The port is untagged in a single VLAN. When a port is in Access mode, the packet types which are accepted on the port (packet type) cannot be designated. It is also not possible to enable/disable ingress filtering on an access port.

Trunk. The port is tagged in all VLANs of which it is a member, except the default VLAN (which is untagged).

General. The port can be tagged or untagged in any VLAN.

Tagged. Defines the interface as a tagged member of a VLAN. All packets forwarded by the interface are tagged. The packets contain VLAN information.

Untagged. Packets forwarded by the interface are untagged.

Forbidden. Forbidden ports are not included in the VLAN.

Exclude. Excludes the interface from the VLAN. The interface cannot be added to the VLAN through GVRP.
WebView Switches

VLAN Management Tab - VLAN to Ports

The VLAN to Ports screen contains fields for configuring VLANs to a port.

Port. Displays the interface number.

Mode. Indicates the port to VLAN mode. The possible field values are:

- **General.** The port can be tagged or untagged in any VLAN.
- **Access.** The port is untagged in a single VLAN. When a port is in Access mode, the packet types which are accepted on the port (packet type) cannot be designated. It is also not possible to enable/disable ingress filtering on an access port.
- **Trunk.** The port is tagged in all VLANs of which it is a member, except the default VLAN (which is untagged).

Join VLAN. Defines the VLANs to which the interface is joined.

VLANs. Displays the PVID tag.

LAG. Indicates if the port is a member of a LAG. If it is a member of a LAG, it cannot be configured to a VLAN. The LAG to which it belongs can be configured to a VLAN.
Chapter 5: Using the Web-based Utility for Configuration

VLAN Management Tab - GVRP

GARP VLAN Registration Protocol (GVRP) is specifically provided for automatic distribution of VLAN membership information among VLAN-aware bridges. GVRP allows VLAN-aware bridges to automatically learn VLANs to bridge ports mapping, without having to individually configure each bridge and register VLAN membership.

The Global System LAG information displays the same field information as the ports, but represents the LAG GVRP information.

The GVRP screen is divided into two areas, GVRP and GVRP Table. The field definitions for both areas are the same.

Enable GVRP. Enables and disables GVRP on the device.

Interface. Displays the interface on which GVRP is enabled. The possible field values are:

- **Port.** Indicates the port number on which GVRP is enabled.
- **LAG.** Indicates the LAG number on which GVRP is enabled.

GVRP State. When the checkbox is checked, GVRP is enabled on the interface.

Dynamic VLAN Creation. When the checkbox is checked, Dynamic VLAN creation is enabled on the interface.

GVRP Registration. When the checkbox is checked, VLAN registration through GVRP is enabled on the device.

The **Update** button adds the configured GVRP setting to the table at the bottom of the screen.
Statistics Tab - RMON Statistics

The RMON Statistics screen contains fields for viewing information about device utilization and errors that occurred on the device.

Interface. Indicates the device for which statistics are displayed. The possible field values are:

- **Port.** Defines the specific port for which RMON statistics are displayed.
- **LAG.** Defines the specific LAG for which RMON statistics are displayed.

Refresh Rate. Defines the amount of time that passes before the interface statistics are refreshed. The possible field values are:

- **No Refresh.** Indicates that the RMON statistics are not refreshed.
- **15 Sec.** Indicates that the RMON statistics are refreshed every 15 seconds.
- **30 Sec.** Indicates that the RMON statistics are refreshed every 30 seconds.
- **60 Sec.** Indicates that the RMON statistics are refreshed every 60 seconds.

Received Bytes (Octets). Displays the number of octets received on the interface since the device was last refreshed. This number includes bad packets and FCS octets, but excludes framing bits.

Received Packets. Displays the number of packets received on the interface, including bad packets, Multicast and broadcast packets, since the device was last refreshed.

Broadcast Packets Received. Displays the number of good broadcast packets received on the interface since the device was last refreshed. This number does not include Multicast packets.

Multicast Packets Received. Displays the number of good Multicast packets received on the interface since the device was last refreshed.

CRC & Align Errors. Displays the number of CRC and Align errors that have occurred on the interface since the device was last refreshed.

Undersize Packets. Displays the number of undersized packets (less than 64 octets) received on the interface since the device was last refreshed.

Oversize Packets. Displays the number of oversized packets (over 1518 octets) received on the interface since the device was last refreshed.
Fragments. Displays the number of fragments (packets with less than 64 octets, excluding framing bits, but including FCS octets) received on the interface since the device was last refreshed.

Jabbers. Displays the total number of received packets that were longer than 1518 octets. This number excludes frame bits, but includes FCS octets that had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral octet (Alignment Error) number. The field range to detect jabbers is between 20 ms and 150 ms.

Collisions. Displays the number of collisions received on the interface since the device was last refreshed.

Frames of xx Bytes. Number of xx-byte frames received on the interface since the device was last refreshed.

Clear Counters button. This option will reset all of the statistic counts.

Refresh Now button. Use this option to refresh the statistics that are displayed on the page.

Statistics Tab - RMON History

The RMON History screen contains information about samples of data taken from ports. For example, the samples may include interface definitions or polling periods.

The RMON History Control screen is divided into RMON History and Log Table.

Source Interface. Displays the interface from which the history samples were taken. The possible field values are:

- **Port.** Specifies the port from which the RMON information was taken.
- **LAG.** Specifies the port from which the RMON information was taken.

Sampling Interval. Indicates (in seconds) the time that samplings are taken from the ports. The field range is 1-3600. The default is 1800 seconds (equal to 30 minutes).

Max No. of Samples to Keep. Indicates the number of samples to save.

Owner. Displays the RMON station or user that requested the RMON information. The field range is 0-20 characters.

The **Add to List** button adds the configured RMON sampling to the Log Table at the bottom of the screen.

![Figure 5-18: Statistics - RMON History](image)
Log Table

Source Interface. Displays the interface from which the history samples were taken.

Sampling Interval. Indicates the time in seconds that samplings are taken from the port.

Sampling Requested. Displays the number of samples to be saved. The field range is 1-65535. The default value is 50.

Current Number of Samples. Displays the current number of samples taken.

View History Table button. This button opens the RMON History screen.

RMON History Table

The RMON History screen contains interface specific statistical network samplings. Each table entry represents all counter values compiled during a single sample.

History Entry No. Displays the history table entry number.

Owner. Displays the RMON station or user that requested the RMON information. The field range is 0-20 characters.

Sample No. Indicates the sample number from which the statistics were taken.

Received Bytes (Octets). Displays the number of octets received on the interface since the device was last refreshed. This number includes bad packets and FCS octets, but excludes framing bits.

Received Packets. Displays the number of packets received on the interface since the device was last refreshed, including bad packets, Multicast and Broadcast packets.

Broadcast Packets. Displays the number of good Broadcast packets received on the interface since the device was last refreshed. This number does not include Multicast packets.

Multicast Packets. Displays the number of good Multicast packets received on the interface since the device was last refreshed.

CRC Align Errors. Displays the number of CRC and Align errors that have occurred on the interface since the device was last refreshed.

Undersize Packets. Displays the number of undersized packets (less than 64 octets) received on the interface since the device was last refreshed.

![Figure 5-19: RMON History - RMON History Table](image)
Oversize Packets. Displays the number of oversized packets (over 1518 octets) received on the interface since the device was last refreshed.

Fragments. Displays the number of fragments (packets with less than 64 octets, excluding framing bits, but including FCS octets) received on the interface since the device was last refreshed.

Jabbers. Displays the total number of received packets that were longer than 1518 octets. This number excludes frame bits, but includes FCS octets that had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral octet (Alignment Error) number. The field range to detect jabbers is between 20 ms and 150 ms.

Collisions. Displays the number of collisions received on the interface since the device was last refreshed.

Utilization. Displays the percentage of the interface utilized.

Statistics Tab - RMON Alarm

The RMON Alarm screen contains fields for setting network alarms. Network alarms occur when a network problem, or event, is detected. Rising and falling thresholds generate events.

Alarm Entry. Indicates a specific alarm.

Source Interface. Displays the interface for which RMON statistics are displayed. The possible field values are:

- **Port.** Displays the RMON statistics for the selected port.
- **LAG.** Displays the RMON statistics for the selected LAG.

Counter Name. Displays the selected MIB variable.

Sample Type. Defines the sampling method for the selected variable and comparing the value against the thresholds. The possible field values are:

- **Absolute.** Compares the values directly with the thresholds at the end of the sampling interval.
- **Delta.** Subtracts the last sampled value from the current value. The difference in the values is compared to the threshold.

Rising Threshold. Displays the rising counter value that triggers the rising threshold alarm. The rising threshold is presented on top of the graph bars. Each monitored variable is designated a color.

Rising Event. Displays the mechanism in which the alarms are reported. The possible field values are:

Figure 5-20: Statistics - RMON Alarm
WebView Switches

- **LOG.** Indicates there is not a saving mechanism for either the device or in the management system. If the device is not reset, the entry remains in the Log Table.

- **TRAP.** Indicates that an SNMP trap is generated, and sent via the Trap mechanism. The Trap can also be saved using the Trap mechanism.

- **Both.** Indicates that both the Log and Trap mechanism are used to report alarms.

Falling Threshold. Displays the falling counter value that triggers the falling threshold alarm. The falling threshold is graphically presented on top of the graph bars. Each monitored variable is designated a color.

Falling Event. Displays the mechanism in which the alarms are reported. The possible field values are:

- **LOG.** Indicates there is not a saving mechanism for either the device or in the management system. If the device is not reset, the entry remains in the Log Table.

- **TRAP.** Indicates that a SNMP trap is generated, and sent via the Trap mechanism. The Trap can also be saved using the Trap mechanism.

- **Both.** Indicates that both the Log and Trap mechanism are used to report alarms.

Startup Alarm. Displays the trigger that activates the alarm generation. Rising is defined by crossing the threshold from a low-value threshold to a higher-value threshold.

Interval. Defines the alarm interval time in seconds.

Owner. Displays the device or user that defined the alarm.

The **Add to List** button adds the RMON Alarms Table entry.

The Alarm Table area contains the following additional field:

Counter Value. Displays the current counter value for the particular alarm.
Statistics Tab - RMON Events

The RMON Events screen contains fields for defining RMON events.

Add Event

Event Entry. Displays the event.

Community. Displays the community to which the event belongs.

Description. Displays the user-defined event description.

Type. Describes the event type. Possible values are:

- **None.** Indicates that no event occurred.
- **Log.** Indicates that the event is a log entry.
- **Trap.** Indicates that the event is a trap.
- **Log and Trap.** Indicates that the event is both a log entry and a trap.

Owner. Displays the device or user that defined the event.

The **Add to List** button adds the configured RMON event to the Event Table at the bottom of the screen.

The Event Table area contains the following additional field:

Time. Displays the time that the event occurred.
Statistics Tab - Port Utilization

The Port Utilization screen displays the amount of resources each interface is currently consuming. Ports in green are functioning normally, while ports in red are currently transmitting an excessive amount of network traffic.

Refresh Rate. Indicates the amount of time that passes before the port utilization statistics are refreshed. The possible field values are:

- **No Refresh.** Indicates that the statistics are not refreshed.
- **15 Sec.** Indicates that the statistics are refreshed every 15 seconds.
- **30 Sec.** Indicates that the statistics are refreshed every 30 seconds.
- **60 Sec.** Indicates that the statistics are refreshed every 60 seconds.

Statistics Tab - 802.1x Statistics

The 802.1X Statistic screen contains information about EAP packets received on a specific port.

Port. Indicates the port, which is polled for statistics.

Refresh Rate. Indicates the amount of time that passes before the EAP statistics are refreshed. The possible field values are:

- **No Refresh.** Indicates that the EAP statistics are not refreshed.
- **15 Sec.** Indicates that the EAP statistics are refreshed every 15 seconds.
- **30 Sec.** Indicates that the EAP statistics are refreshed every 30 seconds.
- **60 Sec.** Indicates that the EAP statistics are refreshed every 60 seconds.

Name. Displays the measured 802.1x statistic.

Description. Describes the measured 802.1x statistic.

Packet. Displays the amount of packets measured for the particular 802.1x statistic.
Statistics Tab - GVRP Statistics

The GVRP Statistics screen contains device statistics for GVRP.

The GVRP Statistics screen is divided into two areas, GVRP Statistics Table and GVRP Error Statistics Table. The following fields are relevant for both tables:

Interface. Specifies the interface type for which the statistics are displayed.
- **Port.** Indicates port statistics are displayed.
- **LAG.** Indicates LAG statistics are displayed.

Refresh Rate. Indicates the amount of time that passes before the GVRP statistics are refreshed. The possible field values are:
- **No Refresh.** Indicates that the GVRP statistics are not refreshed.
- **15 Sec.** Indicates that the GVRP statistics are refreshed every 15 seconds.
- **30 Sec.** Indicates that the GVRP statistics are refreshed every 30 seconds.
- **60 Sec.** Indicates that the GVRP statistics are refreshed every 60 seconds.

The GVRP Statistics Table contains the following fields:

- **Join Empty.** Displays the device GVRP Join Empty statistics.
- **Empty.** Displays the device GVRP Empty statistics.
- **Leave Empty.** Displays the device GVRP Leave Empty statistics.
- **Join In.** Displays the device GVRP Join In statistics.
- **Leave In.** Displays the device GVRP Leave in statistics.
- **Leave All.** Displays the device GVRP Leave all statistics.

The GVRP Error Statistics Table contains the following fields:

- **Invalid Protocol ID.** Displays the device GVRP Invalid Protocol ID statistics.
- **Invalid Attribute Type.** Displays the device GVRP Invalid Attribute ID statistics.
WebView Switches

Invalid Attribute Value. Displays the device GVRP Invalid Attribute Value statistics.

Invalid Attribute Length. Displays the device GVRP Invalid Attribute Length statistics.

Invalid Event. Displays the device GVRP Invalid Events statistics.

The Clear All Counters button resets all tables.

ACL Tab - MAC Based ACL

The MAC Based ACL screen allows a MAC based ACL to be defined. ACEs can be added only if the ACL is not bound to an interface.

ACL Name. Displays the user-defined MAC based ACLs.

New ACL Name. Specifies a new user-defined MAC based ACL name.

Delete ACL. Deletes the selected ACL.

Action. Indicates the ACL forwarding action. This field is permanently set to Deny.

Dest. MAC Address. Matches the destination MAC address to which packets are addressed to the ACE.

The Add to List button adds the configured MAC Based ACLs to the MAC Based ACL Table at the bottom of the screen.

Security Tab - ACL Binding

When an ACL is bound to an interface, all the ACE rules that have been defined are applied to the selected interface. Whenever an ACL is assigned on a VLAN, flows from that ingress interface that do not match the ACL are matched to the default rule, which is Drop unmatched packets.

Interface. Indicates the interface to which the ACL is bound.

ACL Name. Indicates the ACL which is bound to the interface.

The Add to List button adds the ACL Binding configuration to the ACL Binding Table at the bottom of the screen.
Security Tab - RADIUS

Remote Authorization Dial-In User Service (RADIUS) servers provide additional security for networks. RADIUS servers provide a centralized authentication method for web access.

IP Address. The Authentication Server IP address.

Priority. The server priority. The possible values are 0-65535, where 1 is the highest value. The RADIUS Server priority is used to configure the server query order.

Authentication Port. Identifies the authentication port. The authentication port is used to verify the RADIUS server authentication. The authenticated port default is 1812.

Number of Retries. Defines the number of transmitted requests sent to RADIUS server before a failure occurs. The possible field values are 1 - 10. Three is the default value.

Timeout for Reply. Defines the amount of the time in seconds the device waits for an answer from the RADIUS server before retrying the query, or switching to the next server. The possible field values are 1 - 30. Three is the default value.

Dead Time. Defines the amount of time (minutes) that a RADIUS server is bypassed for service requests. The range is 0-2000. The Dead Time default is 0 minutes.

Key String. Defines the default key string used for authenticating and encrypting all RADIUS communications between the device and the RADIUS server. This key must match the RADIUS encryption.

Source IP Address. Defines the source IP address that is used for communication with RADIUS servers.

Usage Type. Specifies the RADIUS server authentication type. The default value is Login. The possible field values are:

- **Login.** Indicates that the RADIUS server is used for authenticating user name and passwords.
- **802.1X.** Indicates that the RADIUS server is used for 802.1X authentication.
- **All.** Indicates that the RADIUS server is used for authenticating user name and passwords, and 802.1X port authentication.

The **Add to List** button adds the RADIUS configuration to the RADIUS Table at the bottom of the screen.
Security Tab - TACACS+

The device provides Terminal Access Controller Access Control System (TACACS+) client support. TACACS+ provides centralized security for validation of users accessing the device. TACACS+ provides a centralized user management system, while still retaining consistency with RADIUS and other authentication processes. The TACACS+ protocol ensures network integrity through encrypted protocol exchanges between the device and TACACS+ server.

Host IP Address. Displays the TACACS+ Server IP address.

Priority. Displays the order in which the TACACS+ servers are used. The default is 0.

Source IP Address. Displays the device source IP address used for the TACACS+ session between the device and the TACACS+ server.

Key String. Defines the authentication and encryption key for TACACS+ server. The key must match the encryption key used on the TACACS+ server.

Authentication Port. Displays the port number through which the TACACS+ session occurs. The default is port 49.

Timeout for Reply. Displays the amount of time that passes before the connection between the device and the TACACS+ server times out. The field range is 1-30 seconds.

Status. Displays the connection status between the device and the TACACS+ server. The possible field values are:

- **Connected.** There is currently a connection between the device and the TACACS+ server.
- **Not Connected.** There is not currently a connection between the device and the TACACS+ server.

Single Connection. Maintains a single open connection between the device and the TACACS+ server when selected.

The **Add to List** button adds the TACACS+ configuration to the TACACS+ table at the bottom of the screen.
Security Tab - 802.1x Settings

Port based authentication enables authenticating system users on a per-port basis via an external server. Only authenticated and approved system users can transmit and receive data. Ports are authenticated via the RADIUS server using the Extensible Authentication Protocol (EAP).

Enable 802.1x. Place a checkmark in the check box to enable 802.1x authentication.

Port. Indicates the port name.

Status Port Control. Specifies the port authorization state. The possible field values are as follows:

- Force-Authorized. The controlled port state is set to Force-Authorized (forward traffic).
- Force-Unauthorized. The controlled port state is set to Force-Unauthorized (discard traffic).

Enable Periodic Reauthentication. Permits immediate port reauthentication.

The Setting Timer button opens the Setting Timer screen to configure ports for 802.1x functionality.

Setting Timer screen

Port. Indicates the port name.

Reauthentication Period. Specifies the number of seconds in which the selected port is reauthenticated (Range: 300-4294967295). The field default is 3600 seconds.

Quiet Period. Specifies the number of seconds that the switch remains in the quiet state following a failed authentication exchange (Range: 0-65535).

Resending EAP. Specifies the number of seconds that the switch waits for a response to an EAP - request/identity frame, from the supplicant (client), before resending the request.

Max EAP Requests. The total amount of EAP requests sent. If a response is not received after the defined period, the authentication process is restarted. The field default is 2 retries.

Supplicant Timeout. Displays the number of seconds that lapses before EAP requests are resent to the supplicant (Range: 1-65535). The field default is 30 seconds.

Server Timeout. Specifies the number of seconds that lapses before the switch resends a request to the authentication server (Range: 1-65535). The field default is 30 seconds.
Security Tab - Port Security

Network security can be increased by limiting access on a specific port only to users with specific MAC addresses. MAC addresses can be dynamically learned or statically configured. Locked port security monitors both received and learned packets that are received on specific ports. Access to the locked port is limited to users with specific MAC addresses. These addresses are either manually defined on the port, or learned on that port up to the point when it is locked. When a packet is received on a locked port, and the packet source MAC address is not tied to that port (either it was learned on a different port, or it is unknown to the system), the protection mechanism is invoked, and can provide various options. Unauthorized packets arriving at a locked port are either:

- Forwarded
- Discarded with no trap
- Discarded with a trap
- Cause the port to be shut down.

Locked port security also enables storing a list of MAC addresses in the configuration file. The MAC address list can be restored after the device has been reset.

Disabled ports are activated from the Port Security page.

Interface. Displays the port or LAG name.

Lock Interface. Selecting this option locks the specified interface.

Learning Mode. Defines the locked port type. The Learning Mode field is enabled only if Locked is selected in the Interface Status field. The possible field values are:

- **Classic Lock.** Locks the port using the classic lock mechanism. The port is immediately locked, regardless of the number of addresses that have already been learned.

- **Limited Dynamic Lock.** Locks the port by deleting the current dynamic MAC addresses associated with the port. The port learns up to the maximum addresses allowed on the port. Both relearning and aging MAC addresses are enabled.

In order to change the Learning Mode, the Lock Interface must be set to Unlocked. Once the mode is changed, the Lock Interface can be reinstated.
Max Entries. Specifies the number of MAC addresses that can be learned on the port. The Max Entries field is enabled only if Locked is selected in the Interface Status field. In addition, the Limited Dynamic Lock mode is selected. The default is 1.

Action on Violation. Indicates the action to be applied to packets arriving on a locked port. The possible field values are:

- **Discard.** Discards packets from any unlearned source. This is the default value.
- **Forward Normal.** Forwards packets from an unknown source without learning the MAC address.
- **Discard Disable.** Discards packets from any unlearned source and shuts down the port. The port remains shut down until reactivated, or until the device is reset.

Enable Trap. Enables traps when a packet is received on a locked port.

Trap Frequency. The amount of time (in seconds) between traps. The default value is 10 seconds.

Security Tab - Multiple Hosts

The Multiple Hosts screen allows network managers to configure advanced port-based authentication settings for specific ports and VLANs.

Port. Displays the port number for which advanced port-based authentication is enabled.

Enable Multiple Hosts. When checked, indicates that multiple hosts are enabled. Multiple hosts must be enabled in order to either disable the ingress-filter, or to use port-lock security on the selected port.

Action on Violation. Defines the action to be applied to packets arriving in single-host mode, from a host whose MAC address is not the supplicant MAC address. The possible field values are:

- **Discard.** Discards the packets. This is the default value.
- **Forward.** Forwards the packet.
- **Discard Disable.** Discards the packets and shuts down the port. The port remains shut down until reactivated, or until the device is reset.

Enable Traps. When checked, indicates that traps are enabled for Multiple Hosts.

Trap Frequency. Defines the time period by which traps are sent to the host. The Trap Frequency (1-1000000) field can be defined only if multiple hosts are disabled. The default is 10 seconds.
The table contains the following additional fields:

Status. Indicates the host status. If there is an asterisk (*), the port is either not linked or is down. The possible field values are:

Number of Violations. Indicates the number of packets that arrived on the interface in single-host mode, from a host whose MAC address is not the supplicant MAC address.

Security Tab - Storm Control

Port. Displays the port number for which storm control is enabled.

Broadcast Control. Indicates whether broadcast packet types are forwarded on the specific interface.

Mode. Specifies the Broadcast mode currently enabled on the device. The possible field values are:

- **Unknown Unicast, Multicast & Broadcast.** Counts Unicast, Multicast, and Broadcast traffic.
- **Multicast & Broadcast.** Counts Broadcast and Multicast traffic together.
- **Broadcast Only.** Counts only Broadcast traffic.

Rate Threshold. The maximum rate (packets per second) at which unknown packets are forwarded. The default value is 3500. The range is 70 -100000.

QoS

Network traffic is usually unpredictable, and the only basic assurance that can be offered is best effort traffic delivery. To overcome this challenge, Quality of Service (QoS) is applied throughout the network. This ensures that network traffic is prioritized according to specified criteria, and that specific traffic receives preferential treatment. QoS in the network optimizes network performance and entails two basic facilities:

Classifying incoming traffic into handling classes, based on an attribute, including:

- The ingress interface
- Packet content
- A combination of these attributes
Providing various mechanisms for determining the allocation of network resources to different handling classes, including:

- The assignment of network traffic to a particular hardware queue
- The assignment of internal resources
- Traffic shaping

The terms Class of Service (CoS) and QoS are used in the following context:

CoS provides varying Layer 2 traffic services. CoS refers to classification of traffic to traffic-classes, which are handled as an aggregate whole, with no per-flow settings. CoS is usually related to the 802.1p service that classifies flows according to their Layer 2 priority, as set in the VLAN header.

QoS refers to Layer 2 traffic and above. QoS handles per-flow settings, even within a single traffic class.

QoS Tab - CoS Settings

The CoS Settings screen contains fields for enabling or disabling CoS. In addition, the Trust mode can be selected. The Trust mode relies on predefined fields within the packet to determine the egress queue settings.

The CoS Settings screen has two areas, CoS Settings and CoS to Queue.

QoS Mode. Indicates if QoS is enabled on the interface. The possible values are:

- **Disable.** Disables QoS on the interface.
- **Basic.** Enables QoS on the interface.

Class of Service. Specifies the CoS priority tag values, where zero is the lowest and 7 is the highest.

Queue. Defines the traffic forwarding queue to which the CoS priority is mapped. Four traffic priority queues are supported.

The **Restore Defaults** button restores the device factory defaults for mapping CoS values to a forwarding queue.
CoS Default

Interface. Interface to which the CoS configuration applies.

Default CoS. Determines the default CoS value for incoming packets for which a VLAN tag is not defined. The possible field values are 0-7. The default CoS is 0.

Restore Defaults. Restores the device factory defaults for mapping CoS values to a forwarding queue.

LAG. LAG of which the port is a member.

QoS Tab - Queue Settings

The Queue Setting screen contains fields for defining the QoS queue forwarding types.

Strict Priority. Indicates that traffic scheduling for the selected queue is based strictly on the queue priority.

WRR. Indicates that traffic scheduling for the selected queue is based strictly on the WRR.

Queue. Displays the queue for which the queue settings are displayed. The possible field range is 1 - 4.

WRR Weight. Displays the WRR weights to queues.

% of WRR Bandwidth. Displays the amount of bandwidth assigned to the system. These values are fixed and are not user defined.

QoS Tab - DSCP Setting

The DSCP Setting screen enables mapping DSCP values to specific queues.

The DSCP Setting screen contains the following fields:

DSCP. Indicates the Differentiated Services Code Point value in the incoming packet.

Queue. Maps the DSCP value to the selected queue.
QoS Tab - Bandwidth

The Bandwidth screen allows network managers to define the bandwidth settings for a specified egress interface. Modifying queue scheduling affects the queue settings globally. The Bandwidth screen is not used with the Service mode, as bandwidth settings are based on services.

Queue shaping can be based per queue and/or per interface. Shaping is determined by the lower specified value. The queue shaping type is selected in the Bandwidth screen.

Interface. Indicates the interface for which the queue shaping information is displayed. The possible field values are:

- **Port.** Indicates the port for which the bandwidth settings are displayed.
- **LAG.** Indicates the LAG for which the bandwidth settings are displayed.

Ingress Rate Limit Status. Indicates if rate limiting is defined on the interface.

Rate Limit (62-1000000 Kbps). Defines the amount of bandwidth assigned to the interface. The possible field values are 62-1000000 Kbps.

Egress Shaping Rate on Selected Port. Indicates if rate limiting is enabled on the interface.

Committed Information Rate (CIR). Defines CIR as the queue shaping type. The possible field value is 64 - 1,000,000 Kbps.

The **Add to List** button adds the Bandwidth configuration to the Bandwidth Table at the bottom of the screen.
QoS Tab - Basic Mode

The Basic Mode screen contains the following fields:

Trust Mode. Displays the trust mode. If a packet's CoS tag and DSCP tag are mapped to different queues, the Trust Mode determines the queue to which the packet is assigned. Possible values are:

- **CoS.** Sets trust mode to CoS on the device. The CoS mapping determines the packet queue
- **DSCP.** Sets trust mode to DSCP on the device. The DSCP mapping determines the packet queue

Spanning Tree

Spanning Tree Protocol (STP) provides tree topography for any arrangement of bridges. STP also provides one path between end stations on a network, eliminating loops.

Loops occur when alternate routes exist between hosts. Loops in an extended network can cause bridges to forward traffic indefinitely, resulting in increased traffic and reducing network efficiency.

The device supports the following Spanning Tree versions:

- **Classic STP.** Provides a single path between end stations, avoiding and eliminating loops.
- **Rapid STP.** Detects and uses network topologies that provide faster convergence of the spanning tree, without creating forwarding loops.
- **Multiple STP.** Provides full connectivity for packets allocated to any VLAN. Multiple STP is based on the RSTP. In addition, Multiple STP transmits packets assigned to different VLANs through different MST regions. MST regions act as a single bridge.
Spanning Tree Tab - STP Status

The STP Status screen describes the STP status on the device.

Spanning Tree State. Indicates if STP is enabled on the device.

Spanning Tree Mode. Indicates the STP mode by which STP is enabled on the device.

Bridge ID. Identifies the Bridge priority and MAC address.

Designated Root. Indicates the ID of the bridge with the lowest path cost to the instance ID.

Root Port. Indicates the port number that offers the lowest cost path from this bridge to the Root Bridge. It is significant when the Bridge is not the Root. The default is zero.

Root Path Cost. The cost of the path from this bridge to the root.

Root Maximum Age (sec). Indicates the device Maximum Age Time. The Maximum Age Time indicates the amount of time in seconds a bridge waits before sending configuration messages. The default max age is 20 seconds. The range is 6 to 40 seconds.

Root Hello Time (sec). Indicates the device Hello Time. The Hello Time indicates the amount of time in seconds a root bridge waits between configuration messages. The default is 2 seconds. The range is 1 to 10 seconds.

Root Forward delay (sec). Indicates the device forward delay time. The Forward Delay Time indicates the amount of time in seconds a bridge remains in a listening and learning state before forwarding packets. The default is 15 seconds. The range is 4 to 30 seconds.

Topology Changes Counts. Indicates the total amount of STP state changes that have occurred.

Last Topology Change. Indicates the amount of time that has elapsed since the bridge was initialized or reset, and the last topographic change occurred. The time is displayed in a day hour minute second format, for example, 2 days 5 hours 10 minutes and 4 seconds.
Spanning Tree Tab - Global STP

The Global STP screen contains parameters for enabling STP on the device.

Global Setting

Spanning Tree State. Indicates if STP is enabled on the device.

STP Operation Mode. Indicates the STP mode by which STP is enabled on the device. The possible field values are:

- **Classic STP.** Enables Classic STP on the device. This is the default value.
- **Rapid STP.** Enables Rapid STP on the device.
- **Multiple STP.** Enables Multiple STP on the device.

BPDU Handling. Determines how BPDU packets are managed when STP is disabled on the port/device. BPDUs are used to transmit spanning tree information. The possible field values are:

- **Filtering.** Filters BPDU packets when spanning tree is disabled on an interface. This is the default value.
- **Flooding.** Floods BPDU packets when spanning tree is disabled on an interface.

Path Cost Default Values. Specifies the method used to assign default path costs to STP ports. The possible field values are:

- **Short.** Specifies 1 through 65,535 range for port path costs. This is the default value.
- **Long.** Specifies 1 through 200,000,000 range for port path costs. The default path costs assigned to an interface varies according to the selected method.

Bridge Settings

Priority. Specifies the bridge priority value. When switches or bridges are running STP, each is assigned a priority. After exchanging BPDUs, the device with the lowest priority value becomes the Root Bridge. The default value is 32768. The port priority value is provided in increments of 4096. For example, 4096, 8192, 12288, etc. The range is 0 to 65535.

Hello Time. Specifies the device Hello Time. The Hello Time indicates the amount of time in seconds a root bridge waits between configuration messages. The default is 2 seconds. The range is 1 to 10 seconds.
 WebView Switches

Max Age. Specifies the device Maximum Age Time. The Maximum Age Time indicates the amount of time in seconds a bridge waits before sending configuration messages. The default max age is 20 seconds. The range is 6 to 40 seconds.

Forward Delay. Specifies the device forward delay time. The Forward Delay Time indicates the amount of time in seconds a bridge remains in a listening and learning state before forwarding packets. The default is 15 seconds. The range is 4 to 30 seconds.

Spanning Tree Tab - STP Port Settings

Network administrators can assign STP settings to specific interfaces using the STP Interface Settings screen.

The STP Interface Settings page contains the following fields:

Interface. Indicates the port or LAG on which STP is enabled.

STP. Indicates if STP is enabled on the port.

Port Fast. Indicates if Fast Link is enabled on the port. If Fast Link mode is enabled for a port, the Port State is automatically placed in the Forwarding state when the port link is up. Fast Link optimizes the STP protocol convergence. STP convergence can take 30-60 seconds in large networks.

Port State. Displays the current STP state of a port. If enabled, the port state determines what forwarding action is taken on traffic. Possible port states are:

- **Disabled.** Indicates that STP is currently disabled on the port. The port forwards traffic while learning MAC addresses.

- **Blocking.** Indicates that the port is currently blocked and cannot forward traffic or learn MAC addresses. Blocking is displayed when Classic STP is enabled.

- **Listening.** Indicates that the port is in Listening mode. The port cannot forward traffic nor can it learn MAC addresses.

- **Learning.** Indicates that the port is in Learning mode. The port cannot forward traffic, however it can learn new MAC addresses.

- **Forwarding.** Indicates that the port is in Forwarding mode. The port can forward traffic and learn new MAC addresses.

Speed. Indicates the speed at which the port is operating.

![Figure 5-42: Spanning Tree - STP Port Settings](image)
Path Cost. Indicates the port contribution to the root path cost. The path cost is adjusted to a higher or lower value, and is used to forward traffic when a path being rerouted.

Default Path Cost. When selected the default path cost is implemented.

Priority. Priority value of the port. The priority value influences the port choice when a bridge has two ports connected in a loop. The priority value is between 0 -240. The priority value is provided in increments of 16.

Designated Bridge ID. Indicates the bridge priority and the MAC Address of the designated bridge.

Designated Port ID. Indicates the selected port’s priority and interface.

Designated Cost. Indicates the cost of the port participating in the STP topology. Ports with a lower cost are less likely to be blocked if STP detects loops.

Forward Transitions. Indicates the number of times the port has changed from the Blocking state to Forwarding state.

Spanning Tree Tab - RSTP Port Settings

While the classic spanning tree prevents Layer 2 forwarding loops in a general network topology, convergence can take between 30-60 seconds. This time may delay detecting possible loops, and propagating status topology changes. Rapid Spanning Tree Protocol (RSTP) detects and uses network topologies that allow a faster STP convergence without creating forwarding loops.

Interface. Displays the port or LAG on which Rapid STP is enabled.

Role. Indicates the port role assigned by the STP algorithm in order to provide to STP paths. The possible field values are:

- **Root.** Provides the lowest cost path to forward packets to root switch.
- **Designated.** Indicates that the port or LAG via which the designated switch is attached to the LAN.
- **Alternate.** Provides an alternate path to the root switch from the root interface.
- **Backup.** Provides a backup path to the designated port path toward the Spanning Tree leaves. Backup ports occur only when two ports are connected in a loop by a point-to-point link. Backup ports also occur when a LAN has two or more connections connected to a shared segment.
- **Disabled.** Indicates the port is not participating in the Spanning Tree.

![Figure 5-43: Spanning Tree - RSTP Port Settings](image)
WebView Switches

Mode. Indicates the current Spanning Tree mode. The Spanning Tree mode is selected in the Global STP screen. The possible field values are:

- **Classic STP.** Indicates that Classic STP is enabled on the device.
- **Rapid STP.** Indicates that Rapid STP is enabled on the device.
- **Multiple STP.** Indicates that Multiple STP is enabled on the device.

Fast Link. Indicates if Fast Link is enabled or disabled for the port or LAG. If Fast Link is enabled for a port, the port is automatically placed in the forwarding state (configurable from Spanning Tree > STP Port Settings tab).

Port State. Indicates if RSTP is enabled on the interface.

Point-to-Point Admin Status. Indicates if a point-to-point links are established, or permits the device to establish a point-to-point link. The possible field values are:

- **Auto.** Point-to-point links are automatically established by the device.
- **Enabled.** Enables the device to establish a point-to-point link. To establish communications over a point-to-point link, the originating PPP first sends Link Control Protocol (LCP) packets to configure and test the data link. After a link is established and optional facilities are negotiated as needed by the LCP, the originating PPP sends Network Control Protocols (NCP) packets to select and configure one or more network layer protocols. When each of the chosen network layer protocols has been configured, packets from each network layer protocol can be sent over the link. The link remains configured for communications until explicit LCP or NCP packets close the link, or until some external event occurs. This is the actual switch port link type. It may differ from the administrative state.
- **Disabled.** Disables point-to-point link.

Point-to-Point Oper Status. Indicates the Point-to-Point operating state.

Activate Protocol Migration Test. This option sends Link Control Protocol (LCP) packets to test if a data link is enabled.
Spanning Tree Tab - MSTP Properties

MSTP provides differing load balancing scenarios. For example, while port A is blocked in one STP instance, the same port is placed in the Forwarding State in another STP instance. The MSTP Properties screen contains information for defining global MSTP settings, including region names, MSTP revisions, and maximum hops.

The MSTP Properties screen contains the following fields:

- **Region Name.** Provides a user-defined STP region name.
- **Revision.** Defines unsigned 16-bit number that identifies the revision of the current MST configuration. The revision number is required as part of the MST configuration. The possible field range 0-65535.
- **Max Hops.** Indicates the total number of hops that occur in a specific region before the BPDU is discarded. Once the BPDU is discarded, the port information is aged out. The possible field range is 1-40. The field default is 20 hops.
- **IST Master.** Identifies the Spanning Tree Master instance. The IST Master is the specified instance root.

Spanning Tree Tab - MSTP Instance Settings

MSTP operation maps VLANs into STP instances. Packets assigned to various VLANs are transmitted along different paths within Multiple Spanning Trees Regions (MST Regions). Regions are one or more Multiple Spanning Tree bridges by which frames can be transmitted. In configuring MST, the MST region to which the device belongs is defined. A configuration consists of the name, revision, and region to which the device belongs.

Network Administrators can define MSTP Instances settings using the MSTP Instance Settings screen.

- **Instance ID.** Defines the VLAN group to which the interface is assigned.
- **Included VLAN.** Maps the selected VLAN to the selected instance. Each VLAN belongs to one instance.
- **Bridge Priority.** Specifies the selected spanning tree instance device priority. The field range is 0-61440.
- **Designated Root Bridge ID.** Indicates the ID of the bridge with the lowest path cost to the instance ID.
- **Root Port.** Indicates the selected instance’s root port.
- **Root Path Cost.** Indicates the selected instance’s path cost.
- **Bridge ID.** Indicates the bridge ID of the selected instance.

Remaining Hops. Indicates the number of hops remaining to the next destination.

Spanning Tree Tab - MSTP Interface Settings

Network Administrators can assign MSTP Interface settings using the MSTP Interface Settings screen.

The MSTP Interface Settings screen contains the following fields:

- **Instance ID.** Lists the MSTP instances configured on the device. Possible field range is 0-15.

- **Interface.** Displays the interface for which the MSTP settings are displayed. The possible field values are:
 - **Port.** Specifies the port for which the MSTP settings are displayed.
 - **LAG.** Specifies the LAG for which the MSTP settings are displayed.

- **Port State.** Indicates whether the port is enabled for the specific instance.

- **Type.** Indicates if the port is a point-to-point port, or a port connected to a hub. The possible field values are:
 - **Boundary Port.** Indicates the port is a boundary port. A Boundary port attaches MST bridges to LAN in an outlying region. If the port is a boundary port, it also indicates whether the device on the other side of the link is working in RSTP or STP mode.
 - **Master Port.** Indicates the port is a master port. A Master port provides connectivity from a MSTP region to the outlying CIST root.
 - **Internal.** Indicates the port is an internal port.

- **Role.** Indicates the port role assigned by the STP algorithm in order to provide to STP paths. The possible field values are:
 - **Root.** Provides the lowest cost path to forward packets to root device.
 - **Designated.** Indicates the port or LAG via which the designated device is attached to the LAN.
 - **Alternate.** Provides an alternate path to the root device from the root interface.
 - **Backup.** Provides a backup path to the designated port path toward the Spanning Tree leaves. Backup ports occur only when two ports are connected in a loop by a point-to-point link. Backup ports also occur when a LAN has two or more connections connected to a shared segment.
Chapter 5: Using the Web-based Utility for Configuration

Multicast Tab - IGMP Snooping

When IGMP Snooping is enabled globally, all IGMP packets are forwarded to the CPU. The CPU analyzes the incoming packets and determines:

- Which ports want to join which Multicast groups?
- Which ports have Multicast routers generating IGMP queries?
- Which routing protocols are forwarding packets and Multicast traffic?

Ports requesting to join a specific Multicast group issue an IGMP report, specifying that Multicast group is accepting members. This results in the creation of the Multicast filtering database.

IGMP Snooping Status. Indicates if IGMP Snooping is enabled on the device. IGMP Snooping can be enabled only if Bridge Multicast Filtering is enabled.

VLAN ID. Specifies the VLAN ID.

IGMP Status. Indicates if IGMP snooping is enabled on the VLAN.

Figure 5-47: Multicast - IGMP Snooping
Auto Learn. Indicates if Auto Learn is enabled on the device. If Auto Learn is enabled, the device automatically learns where other Multicast groups are located. Enables or disables Auto Learn on the Ethernet device.

Host Timeout. Indicates the amount of time host waits to receive a message before timing out. The default time is 260 seconds.

MRouter Timeout. Indicates the amount of the time the Multicast router waits to receive a message before it times out. The default value is 300 seconds.

Leave Timeout. Indicates the amount of time the host waits, after requesting to leave the IGMP group and not receiving a Join message from another station, before timing out. If a Leave Timeout occurs, the switch notifies the Multicast device to stop sending traffic. The Leave Timeout value is either user-defined, or an immediate leave value. The default timeout is 10 seconds.

Multicast Tab - Bridge Multicast

The Bridge Multicast screen displays the ports and LAGs attached to the Multicast service group in the Ports and LAGs tables. The Port and LAG tables also reflect the manner in which the port or LAGs joined the Multicast group. Ports can be added either to existing groups or to new Multicast service groups. The Bridge Multicast screen permits new Multicast service groups to be created. The Bridge Multicast screen also assigns ports to a specific Multicast service address group.

The Bridge Multicast screen is divided into two areas, Configuring Multicast and Multicast Table. The fields are the same for both areas.

Enable Bridge Multicast Filtering. This option enables/disables Bridge Multicast Filtering.

VLAN ID. Identifies a VLAN to be configured to a Multicast service.

Bridge Multicast Address. Identifies the Multicast group MAC address/IP address.

Interface or **LAG.** Displays LAG that can be added to a Multicast service.

The configuration options are as follows:

- **Static.** Indicates the port is user-defined.
- **Dynamic.** Indicates the port is configured dynamically.
- **Forbidden.** Forbidden ports are not included the Multicast group, even if IGMP snoping designated the port to join a Multicast group.
WebView Switches

- **None.** The port is not configured for Multicast service.

The **Add to List** button adds the configured RMON event to the Event Table at the bottom of the screen.

Multicast Tab - Bridge Multicast Forward All

The Bridge Multicast Forward All screen contains fields for attaching ports or LAGs to a device that is attached to a neighboring Multicast router/switch. Once IGMP Snooping is enabled, Multicast packets are forwarded to the appropriate port or VLAN.

The Bridge Multicast Forward All screen contains the following fields:

- **VLAN ID.** Displays the VLAN for which Multicast parameters are displayed.

The configuration options are as follows:

- **None.** The port is not configured for Multicast service.

- **Forbidden.** Forbidden ports are not included the Multicast group, even if IGMP snooping designated the port to join a Multicast group.

- **Static.** Indicates the port is user-defined.

- **Dynamic.** Indicates the port is configured dynamically.

![Figure 5-49: Multicast - Bridge Multicast Forward All](image-url)
SNMP Tab - Global Parameters

The Global Parameters screen contains parameters for defining SNMP notification parameters.

Local Engine ID. Indicates the local device engine ID. The field value is a hexadecimal string. Each byte in hexadecimal character strings consists of two hexadecimal digits. Each byte can be separated by a period or a colon. The Engine ID must be defined before SNMPv3 is enabled. For stand-alone devices, select a default Engine ID that is comprised of Enterprise number and the default MAC address. For a stackable system configure the Engine ID, and verify that the Engine ID is unique for the administrative domain. This prevents two devices in a network from having the same Engine ID.

Use Default. Uses the device generated Engine ID. The default Engine ID is based on the device MAC address and is defined per standard as:

- First 4 octets — first bit = 1, the rest is IANA Enterprise number.
- Fifth octet — Set to 3 to indicate the MAC address that follows.
- Last 6 octets — MAC address of the device.

SNMP Notifications. Indicates if the device can send SNMP notifications.

Authentication Notifications. Indicates if SNMP Authentication failure notification is enabled on the device.

SNMP Tab - Views

SNMP Views provide access or block access to device features or feature aspects. For example, a view can be defined that states that SNMP Group A has Read Only (R/O) access to Multicast groups, while SNMP Group B has Read-Write (R/W) access to Multicast groups. Feature access is granted via the MIB name, or MIB Object ID.

View Name. Displays the user-defined views. The options are as follows:

- **Default.** Displays the default SNMP view for read and read/write views.
- **DefaultSuper.** Displays the default SNMP view for administrator views.

Subtree ID Tree. Indicates the device feature OID included or excluded in the selected SNMP view. The options to select the Subtree are as follows:

- **Select from List.** Select the Subtree from the list provided.
WebView Switches

- **Insert.** Enables a Subtree not included in the Select from List field to be entered.

View Type. Indicates if the defined OID branch will be included or excluded in the selected SNMP view.

The **Add to List** button adds the Views configuration to the Views Table at the bottom of the screen.

SNMP Tab - Group Profile

The Group Profile screen provides information for creating SNMP groups and assigning SNMP access control privileges to SNMP groups. Groups allow network managers to assign access rights to specific device features, or features aspects.

Group Name. Displays the user-defined group to which access control rules are applied. The field range is up to 30 characters.

Security Model. Defines the SNMP version attached to the group. The possible field values are:

- **SNMPv1.** SNMPv1 is defined for the group.
- **SNMPv2.** SNMPv2 is defined for the group.
- **SNMPv3.** SNMPv3 is defined for the group.

Security Level. Defines the security level attached to the group. Security levels apply to SNMPv3 only. The possible field values are:

- **No Authentication.** Indicates that neither the Authentication nor the Privacy security levels are assigned to the group.
- **Authentication.** Authenticates SNMP messages, and ensures the SNMP messages origin is authenticated.
- **Privacy.** Encrypts SNMP messages.

Operation. Defines the group access rights. The possible field values are:

- **Read.** The management access is restricted to read-only, and changes cannot be made to the assigned SNMP view.
- **Write.** The management access is read-write and changes can be made to the assigned SNMP view.
- **Notify.** Sends traps for the assigned SNMP view.
SNMP Tab - Group Membership

The Group Membership screen provides information for assigning SNMP access control privileges to SNMP groups.

User name. Provides a user-defined local user list.

Engine ID. Indicates either the local or remote SNMP entity to which the user is connected. Changing or removing the local SNMP Engine ID deletes the SNMPv3 User Database.

- Local. Indicates that the user is connected to a local SNMP entity.
- Remote. Indicates that the user is connected to a remote SNMP entity. If the Engine ID is defined, remote devices receive inform messages.

Group Name. Contains a list of user-defined SNMP groups. SNMP groups are defined in the SNMP Group Profile page.

Authentication Method. Indicates the Authentication method used. The possible field values are:

- None. Indicates that no authentication method is used to authenticate the port.
- MD5 Password. Indicates that port authentication is performed via HMAC-MD5-96 password authentication.
- SHA Password. Indicates that port authentication is performed via HMAC-SHA-96 password authentication.
- MD5 Key. Indicates that port authentication is performed via the HMAC-MD5 algorithm.
- SHA Key. Indicates that port authentication is performed via HMAC-SHA-96 authentication.

Password. Define the local user password. Local user passwords can contain up to 159 characters.

Authentication Key. Defines the HMAC-MD5-96 or HMAC-SHA-96 authentication level. The authentication and privacy keys are entered to define the authentication key. If only authentication is required, 16 bytes are defined. If both privacy and authentication are required, 32 bytes are defined. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or a colon.

Privacy Key. Defines the Privacy Key (LSB). If only authentication is required, 20 bytes are defined. If both privacy and authentication are required, 36 bytes are defined. Each byte in hexadecimal character strings is two hexadecimal digits. Each byte can be separated by a period or colon.
The **Add to List** button adds the Group Membership configuration to the respective table at the bottom of the screen.

SNMP Tab - Communities

The Communities screen contains three areas, Communities, Basic Table and Advanced Table.

SNMP Management Station. Defines the management station IP address for which the advanced SNMP community is defined. There are two definition options:

- Define the management station IP address.
- **All.** Includes all management station IP addresses.

Community String. Defines the password used to authenticate the management station to the device.

Basic. Enables SNMP Basic mode for a selected community and contains the following fields:

Access Mode. Defines the access rights of the community. The possible field values are:

- **Read Only.** Management access is restricted to read-only, and changes cannot be made to the community.
- **Read Write.** Management access is read-write and changes can be made to the device configuration, but not to the community.
- **SNMP Admin.** User has access to all device configuration options, as well as permissions to modify the community.

View Name. Contains a list of user-defined SNMP views.

Advanced. Enables SNMP Advanced mode for a selected community and contains the following fields:

Group Name. Defines advanced SNMP communities group names.

The **Add to List** button adds the Communities configuration to the respective Table at the bottom of the screen.

Base Table

Management Station. Displays the management station IP address for which the basic SNMP community is defined.
WebView Switches

Community String. Displays the password used to authenticate the management station to the device.

Access Mode. Displays the access rights of the community.

View Name. Displays the user-defined SNMP view.

Advanced Table

Management Station. Displays the management station IP address for which the basic SNMP community is defined.

Community String. Displays the password used to authenticate the management station to the device.

Group Name. Displays advanced SNMP communities group name.

SNMP Tab - Notification Filter

The Notification Filter screen permits filtering traps based on OIDs. Each OID is linked to a device feature or a feature aspect. The Notification Filter screen also allows network managers to filter notifications.

Filter Name. Contains a list of user-defined notification filters.

New Object Identifier Subtree. Displays the OID for which notifications are sent or blocked. If a filter is attached to an OID, traps or informs are generated and sent to the trap recipients. Object IDs are selected from either the Select from List or the Object ID List. There are two configuration options:

Select from List. Select the OID from the list provided.

Object ID. Enter an OID not offered in the Select from List option.

Filter Type. Indicates whether informs or traps are sent regarding the OID to the trap recipients.

- **Excluded.** Restricts sending OID traps or informs.
- **Included.** Sends OID traps or informs.

The **Add to List** button adds the Notification Filter configuration to the Notification Filter Table at the bottom of the screen.
SNMP Tab - Notification Recipient

The Notification Recipient screen contains information for defining filters that determine whether traps are sent to specific users, and the trap type sent. SNMP notification filters provide the following services:

- Identifying Management Trap Targets
- Trap Filtering
- Selecting Trap Generation Parameters
- Providing Access Control Checks

Recipient IP. Indicates the IP address to whom the traps are sent.

Notification Type. Defines the notification sent. The possible field values are:

- **Traps.** Indicates traps are sent.
- **Informs.** Indicates informs are sent.

SNMPv1,2. Enables SNMPv1,2 as the Notification Recipient. Either SNMPv1,2 or SNMPv3 can be enabled at any one time, but not both at the same time. If SNMPv1,2 is enabled, the Community String and Notification Version fields are enabled for configuration:

Community String. Identifies the community string of the trap manager.

Notification Version. Determines the trap type. The possible field values are:

- **SNMP V1.** Indicates SNMP Version 1 traps are sent.
- **SNMP V2.** Indicates SNMP Version 2 traps are sent.

SNMPv3. Enables SNMPv3 as the Notification Recipient. Either SNMPv1,2 or SNMPv3 can be enabled at any one time, but not both at the same time. If SNMPv3 is enabled, the User Name and Security Level fields are enabled for configuration:

User Name. Defines the user to whom SNMP notifications are sent.

Security Level. Defines the means by which the packet is authenticated. The possible field values are:

- **No Authentication.** Indicates the packet is neither authenticated nor encrypted.
WebView Switches

- **Authentication.** Indicates the packet is authenticated.
- **Privacy.** Indicates the packet is both authenticated and encrypted.

UDP Port. Displays the UDP port used to send notifications. The default is 162.

Filter Name. Indicates if the SNMP filter for which the SNMP Notification filter is defined.

Timeout. Indicates the amount of time (seconds) the device waits before resending informs. The default is 15 seconds.

Retries. Indicates the amount of times the device resends an inform request. The default is 3 seconds.

The **Add to List** button adds the Notification Recipient configuration to the relevant table at the bottom of the screen.

Admin Tab - User Authentication

The User Authentication screen is used to modify user passwords.

Authentication Type. Defines the user authentication methods. Combinations of all the authentication methods can be selected. The possible field values are:

- **Local.** Authenticates the user at the device level. The device checks the user name and password for authentication.
- **RADIUS.** Authenticates the user at the RADIUS server.
- **TACACS+.** Authenticates the user at the TACACS+ server.
- **None.** Assigns no authentication method to the authentication profile.

User Name. Displays the user name.

Password. Specifies the new password. The password is not displayed. As it entered an “*” corresponding to each character is displayed in the field. (Range: 1-159 characters)

Confirm Password. Confirms the new password. The password entered into this field must be exactly the same as the password entered in the Password field.

The **Add to List** button adds the user configuration to the Local User’s Table.
Admin Tab - Static Address

A static address can be assigned to a specific interface on this switch. Static addresses are bound to the assigned interface and cannot be moved. When a static address is seen on another interface, the address will be ignored and will not be written to the address table.

Interface. Displays the interface to which the entry refers:
- **Port.** The specific port number to which the forwarding database parameters refer.
- **LAG.** The specific LAG number to which the forwarding database parameters refer.

MAC Address. Displays the MAC address to which the entry refers.

VLAN ID. Displays the VLAN ID number to which the entry refers.

VLAN Name. Displays the VLAN name to which the entry refers.

Status. Displays how the entry was created. The possible field values are:
- **Permanent.** The MAC address is permanent.
- **Delete on Reset.** The MAC address is deleted when the device is reset.
- **Delete on Timeout.** The MAC address is deleted when a timeout occurs.
- **Secure.** The MAC Address is defined for locked ports.

Query

Port. Specifies the interface for which the table is queried. There are two interface types from which to select.
- **Port.** The specific port number.
- **LAG.** The specific LAG number.

MAC Address. Specifies the MAC address for which the table is queried.

VLAN ID. Specifies the VLAN ID for which the table is queried.

Address Table Sort Key. Specifies the means by which the Dynamic MAC Address Table is sorted. The address table can be sorted by address, VLAN, or port.
Admin Tab - Dynamic Address

The Dynamic Address Table contains the MAC addresses learned by monitoring the source address for traffic entering the switch. When the destination address for inbound traffic is found in the database, the packets intended for that address are forwarded directly to the associated port. Otherwise, the traffic is flooded to all ports.

The Dynamic Address screen contains parameters for querying information in the Dynamic MAC Address Table, including the interface type, MAC addresses, VLAN, and table storing. The Dynamic MAC Address table contains information about the aging time before a dynamic MAC address is erased, and includes parameters for querying and viewing the Dynamic MAC Address table. The Dynamic MAC Address table contains address parameters by which packets are directly forwarded to the ports. The Dynamic Address Table can be sorted by interface, VLAN, and MAC Address.

Address Aging. Specifies the amount of time (in seconds) the MAC address remains in the Dynamic MAC Address table before it times out, if no traffic from the source is detected. The default value is 300 seconds.

Clear Table. If checked, clears the MAC address table.

Query

Port. Specifies the interface for which the table is queried. There are two interface types from which to select.

- **Port.** The specific port number.
- **LAG.** The specific LAG number.

MAC Address. Specifies the MAC address for which the table is queried.

VLAN ID. Specifies the VLAN ID for which the table is queried.

Address Table Sort Key. Specifies the means by which the Dynamic MAC Address Table is sorted. The address table can be sorted by address, VLAN, or port.
Admin Tab - Logging

The System Logs enable viewing device events in real time, and recording the events for later usage. System Logs record and manage events and report errors or informational messages.

Event messages have a unique format, as per the SYSLOG protocols recommended message format for all error reporting. For example, Syslog and local device reporting messages are assigned a severity code, and include a message mnemonic, which identifies the source application generating the message. It allows messages to be filtered based on their urgency or relevancy. Each message severity determines the set of event logging devices that are sent per each event logging.

Logging. Indicates if device global logs for Cache, File, and Server Logs are enabled. Console logs are enabled by default.

- **Emergency.** The system is not functioning.
- **Alert.** The system needs immediate attention.
- **Critical.** The system is in a critical state.
- **Error.** A system error has occurred.
- **Warning.** A system warning has occurred.
- **Notice.** The system is functioning properly, but system notice has occurred.
- **Informational.** Provides device information.
- **Debug.** Provides detailed information about the log. If a Debug error occurs, contact Customer Tech Support.
Admin Tab - Port Mirroring

Port mirroring monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from one port to a monitoring port. Port mirroring can be used as diagnostic tool and/or a debugging feature. Port mirroring also enables switch performance monitoring.

Network administrators configure port mirroring by selecting a specific port to copy all packets, and different ports from which the packets are copied.

Source Port. Defines the port to which traffic is mirrored.

Type. Indicates the port mode configuration for port mirroring. The possible field values are:

- RxOnly. Defines the port mirroring on receiving ports. This is the default value.
- TxOnly. Defines the port mirroring on transmitting ports.
- Both. Defines the port mirroring on both receiving and transmitting ports.

Target Port. Defines the port from which traffic is mirrored.

Admin Tab - Cable Test

The Cable Test screen shows you results from performance tests on copper cables. The maximum cable length that can be tested is 120 meters. Cables are tested when the ports are in the down state, except for the Approximate Cable Length test.

Port. This is the port to which the cable is connected.

Test Result. This is the test result. OK indicates that the cable passed the test. No Cable means there is no cable connected to the port. Open Cable means the cable is connected on only one side. Short Cable indicates that a short has occurred in the cable. Undefined indicates that the test could not be properly performed.

Cable Fault Distance. This is the distance from the port at which the cable error occurred.

Last Update. This is the last time the port was tested.

Test. Click the Test button to perform the test.

Cable Length. This is the approximate length of the cable. The Cable Length test can be performed only when the port is up and operating at 1Gbps.
Admin Tab - Save Configuration

Via TFTP

Upgrade. Select this option to upgrade the switch from a file located on a TFTP server.

- TFTP Server. The TFTP Server IP Address that contains the source file to upgrade from.
- Source File. Specifies the name of the upgrade file on the TFTP Server.

Backup. To backup the switch configuration via TFTP, enter the TFTP server address.

- TFTP Server. Specifies the TFTP Server IP Address to which the Configuration file will be saved.
- Destination File. Specifies the name of the configuration file. The default is StartupCfg.cfg.

Via HTTP

This HTTP Firmware Upgrade screen is used for saving configuration information using your Web browser.

Upgrade. Select this option to upgrade the switch from a file on the local hard drive.

- Source File. Type in the name and path of the file or Browse to locate the upgrade file.

Backup

- Proceed. The Proceed button is used to backup the configuration to the local hard drive.

NOTE: When downloading a configuration file, be sure that it is a valid configuration file. If you have edited the file, ensure that only valid entries have been configured.
Admin Tab - Firmware Upgrade

After you download a new image file, the device should be rebooted. If you are downloading a new boot image, please follow these steps:

1. Download the new boot code. DO NOT RESET THE DEVICE!
2. Download the new software image.
3. Reset the device now.

The Firmware Upgrade screen contains the following fields:

- **via TFTP.** Defines the upgrade through a TFTP Server.
- **via HTTP.** Allows you to upgrade the firmware using your Web browser.
- **Upgrade.** Defines the screen functionality as a Firmware upgrade.
- **Backup.** Defines the screen functionality as a Firmware backup.

- **TFTP Server.** Specifies the TFTP Server IP Address from which files are downloaded.
- **Source File.** Specifies the file to be downloaded.
- **Destination File.** Specifies the destination file type to which to the file is downloaded. The possible field values are:
 - **Software Image.** Downloads the Image file.
 - **Boot Code.** Downloads the Boot file.

Admin Tab - Reboot

The Reboot screen resets the device. The device configuration is automatically saved before the device is rebooted.
Admin Tab - Factory Defaults

The Factory Reset screen allows network managers to reset the device to the factory defaults shipped with the switch. Restoring factory defaults results in erasing the configuration file.

NOTE: Restoring the factory defaults will erase all configuration settings that you have made. You can save a backup of your current configuration settings from the Admin - Save Configuration screen.

Admin Tab - Server Logs

The Server Logs screen contains information for viewing and configuring the Remote Log Servers. New log servers can be defined, and the log severity sent to each server.

Server. Specifies the server to which logs can be sent.

UDP Port (1-65535). Defines the UDP port to which the server logs are sent. The possible range is 1 to 65535. The default value is 514.

Facility. Defines a user-defined application from which system logs are sent to the remote server. Only one facility can be assigned to a single server. If a second facility level is assigned, the first facility is overridden. All applications defined for a device utilize the same facility on a server. The field default is Local 7. The possible field values are Local 0 - Local 7.

Description. Provides a user-defined server description.

Minimum Severity. Indicates the minimum severity from which logs are sent to the server. For example, if Notice is selected, all logs from a Notice severity and higher are sent to the remote server.

The Add to List button adds the Server Log configuration to the Server Log Table at the bottom of the screen.
Admin Tab - Memory Logs

The Memory Log screen contains all system logs in a chronological order that are saved in RAM (Cache).

Log Index. Displays the log number.

Log Time. Displays the time at which the log was generated.

Severity. Displays the log severity.

Description. Displays the log message text.

Admin Tab - Flash Logs

The Flash Log screen contains information about log entries saved to the Log File in FLASH, including the time the log was generated, the log severity, and a description of the log message. The Message Log is available after reboot.

Log Index. Displays the log number.

Log Time. Displays the time at which the log was generated.

Severity. Displays the log severity.

Description. Displays the log message text.
Appendix A: About Gigabit Ethernet and Fiber Optic Cabling

Gigabit Ethernet

Gigabit Ethernet runs at speeds of 1Gbps (Gigabit per second), ten times faster than 100Mbps Fast Ethernet, but it still integrates seamlessly with 100Mbps Fast Ethernet hardware. Users can connect Gigabit Ethernet hardware with either fiber optic cabling or copper Category 5e cabling, with fiber optics more suited for network backbones. As the Gigabit standard gradually integrates into existing networks, current computer applications will enjoy faster access time for network data, hardware, and Internet connections.

Fiber Optic Cabling

Fiber optic cabling is made from flexible, optically efficient strands of glass and coated with a layer of rubber tubing, fiber optics use photons of light instead of electrons to send and receive data. Although fiber is physically capable of carrying terabits of data per second, the signaling hardware currently on the market can handle no more than a few gigabits of data per second.

Fiber cables come with two main connector types. The most commonly used fiber optic cable is multi-mode fiber cable (MMF), with a 62.5 micron fiber optic core. Single-mode fiber cabling is somewhat more efficient than multi-mode but far more expensive, due to its smaller optic core that helps retain the intensity of traveling light signals. A fiber connection always require two fiber cables: one transmits data, and the other receives it.

Each fiber optic cable is tipped with a connector that fits into a fiber port on a network adapter, hub, or switch. In the USA, most cables use a square SC connector that slides and locks into place when plugged into a port or connected to another cable. In Europe, the round ST connector is more prevalent.

You must use the Linksys MGBT1, MGBSX1, or MGBLH1 mini-GBIC modules with the Linksys Gigabit Switches. The MGBSX1 and the MGBLH1 require fiber cabling with LC connectors, and the MGBT1 requires a Category 5e Ethernet cable with an RJ-45 connector.
Appendix B: Windows Help

Almost all networking products require Microsoft Windows. Windows is the most used operating system in the world and comes with many features that help make networking easier. These features can be accessed through Windows Help and are described in this appendix.

TCP/IP

Before a computer can communicate within a network, TCP/IP must be enabled. TCP/IP is a set of instructions, or protocol, all PCs follow to communicate over a network. This is true for wireless networks as well. Your PCs will not be able to utilize wireless networking without having TCP/IP enabled. Windows Help provides complete instructions on enabling TCP/IP.

Shared Resources

If you wish to share printers, folder, or files over your network, Windows Help provides complete instructions on utilizing shared resources.

Network Neighborhood/My Network Places

Other PCs on your network will appear under Network Neighborhood or My Network Places (depending upon the version of Windows you're running). Windows Help provides complete instructions on adding PCs to your network.
Appendix C: Downloading using Xmodem

Startup Menu Procedures

The Startup menu can be entered when booting the device. There is a two second window of time to enter the Startup Menu immediately after the POST test. The menu can be accessed directly from a terminal connected to the console port. The Startup menu procedures can be done using the ASCII terminal or Windows HyperTerminal.

The software download procedure is performed when a new version must be downloaded to replace corrupted files, update or upgrade the system software. To download software from the Startup menu:

To enter the Startup menu:

1. Power off your computer and Switch.
2. Connect the provided null modem cable from the COM port on your computer to the Console port on the Switch.
3. Power on your computer and launch HyperTerminal, follow the instructions in Chapter 4: Using the Console Interface for Configuration to configure HyperTerminal to connect to the Switch.
4. Power on the Switch and watch for the auto-boot message:

 Autoboot in 2 seconds - press RETURN or Esc. to abort and enter prom.

5. When the auto-boot message appears, press the Enter key to access the Startup menu.

 NOTE: If a selection is not made within 35 seconds (default), the device times out and you will need to disconnect the power to restart the process.

6. Select [1] Download Software and a message will appear Downloading code using XMODEM with characters running across the screen. If you do not perform the steps on the next page to locate the file for download within a certain time, the device will reset.
WebView Switches

7. Select **Send File** from the Transfer pull-down menu.

8. In the Filename: field, enter the file path for the file to be downloaded or click **Browse** to locate the file.

 Only valid files, with a *.ros or *.rfb suffix, that have been provided by Linksys, can be downloaded. Downloading invalid files will result in unpredictable behavior.

 Ensure that the Xmodem protocol is selected in the Protocol: field.

9. Press **Send** and the software is downloaded.

After the software has been downloaded, the device will reboot automatically.
Appendix D: Glossary

This glossary contains some basic networking terms you may come across when using this product. For more advanced terms, see the complete Linksys glossary at http://www.linksys.com/glossary.

Access Mode - Specifies the method by which user access is granted to the system.

Access Point - A device that allows wireless-equipped computers and other devices to communicate with a wired network. Also used to expand the range of a wireless network.

Access Profiles - Allows network managers to define profiles and rules for accessing the device. Access to management functions can be limited to user groups, which are defined by the following criteria:
- Ingress interfaces.
- Source IP address and/or Source IP subnets.

ACE - Filters in Access Control Lists (ACL) that determine which network traffic is forwarded. An ACE is based on the following criteria:
- Protocol
- Protocol ID
- Source Port
- Destination Port
- Wildcard Mask
- Source IP Address
- Destination IP Address

ACL (Access Control List) - Access Control Lists are used to grant, deny, or limit access devices, features, or applications.

Auto-negotiation - Allows 10/100 Mbps or 10/100/1000 Mbps Ethernet ports to automatically establish the optimal duplex mode, flow control, and speed.

Back Pressure - A mechanism used with Half Duplex mode that enables a port not to receive a message.
WebView Switches

Bandwidth - The transmission capacity of a given device or network.

Bandwidth Assignments - Indicates the amount of bandwidth assigned to a specific application, user, and/or interface.

Baud - Indicates the number of signaling elements transmitted each second.

Best Effort - Indicates that traffic is assigned to the lowest priority queue, and packet delivery is not guaranteed.

Bit - A binary digit.

Boot - To start a device and cause it to start executing instructions.

Browser - An application program that provides a way to look at and interact with all the information on the World Wide Web.

Bridge - A device that connects two networks. Bridges are hardware specific, however they are protocol independent. Bridges operate at Layer 1 and Layer 2 levels.

Broadcast Domain - Devices sets that receive broadcast frames originating from any device within a designated set. Routers bind Broadcast domains, because routers do not forward broadcast frames.

Broadcast Storm - An excessive amount of broadcast messages simultaneously transmitted across a network by a single port. Forwarded message responses are heaped onto the network, overloading network resources or causing the network to time out.

Burst - A packet transmission at faster than normal rates. Bursts are limited in time and only occur under specific conditions.

Burst Size - Indicates the burst size transmitted at a faster than normal rate.

Byte - A unit of data that is usually eight bits long.

Cable Modem - A device that connects a computer to the cable television network, which in turn connects to the Internet.

CBS (Committed Burst Size) - Indicates the maximum number of data bits transmitted within a specific time interval.

CIR (Committed Information Rate) - The data rate is averaged over a minimum time increment.

Class Maps - An aspect of Quality of Service system that is comprised of an IP ACL and/or a MAC ACL. Class maps are configured to match packet criteria, and are matched to packets in a first-fit fashion.
 WebView Switches

Combo Ports - A single logical port with two physical connections, including an RJ-45 connection and a SFP connection.

Communities - Specifies a group of users which retain the same system access rights.

CoS (Class of Service) - The 802.1p priority scheme. CoS provides a method for tagging packets with priority information. A CoS value between 0-7 is added to the Layer II header of packets, where zero is the lowest priority and seven is the highest.

DDNS (Dynamic Domain Name System) - Allows the hosting of a website, FTP server, or email server with a fixed domain name (e.g., www.xyz.com) and a dynamic IP address.

Default Gateway - A device that forwards Internet traffic from your local area network.

DHCP (Dynamic Host Configuration Protocol) - A networking protocol that allows administrators to assign temporary IP addresses to network computers by "leasing" an IP address to a user for a limited amount of time, instead of assigning permanent IP addresses.

DHCP Clients - An Internet host using DHCP to obtain configuration parameters, such as a network address.

DHCP Server - An Internet host that returns configuration parameters to DHCP clients.

DNS (Domain Name Server) - The IP address of your ISP's server, which translates the names of websites into IP addresses.

Domain - A specific name for a network of computers.

Download - To receive a file transmitted over a network.

DSL (Digital Subscriber Line) - An always-on broadband connection over traditional phone lines.

DSCP (DiffServe Code Point) provides a method of tagging IP packets with QoS priority information.

Dynamic IP Address - A temporary IP address assigned by a DHCP server.

EIGRP (Enhanced Interior Gateway Routing Protocol) - Provides fast convergence, support for variable-length subnet mask, and supports multiple network layer protocols.

Encryption - Encoding data transmitted in a network.

Ethernet - IEEE standard network protocol that specifies how data is placed on and retrieved from a common transmission medium.

Firmware - The programming code that runs a networking device.
WebView Switches

Flow Control - Enables lower speed devices to communicate with higher speed devices. This is implemented by the higher speed device refraining from sending packets.

FTP (File Transfer Protocol) - A protocol used to transfer files over a TCP/IP network.

Full Duplex - The ability of a networking device to receive and transmit data simultaneously.

GARP (General Attributes Registration Protocol) - Registers client stations into a multicast domain.

Gateway - A device that interconnects networks with different, incompatible communications protocols.

GBIC (GigaBit Interface Converter) - A hardware module used to attach network devices to fiber-based transmission systems. GBIC converts the serial electrical signals to serial optical signals and vice versa.

GVRP (GARP VLAN Registration Protocol) - Registers client stations into a VLANs.

Half Duplex - Data transmission that can occur in two directions over a single line, but only one direction at a time.

HTTP (HyperText Transport Protocol) - The communications protocol used to connect to servers on the World Wide Web.

HTTPS (HyperText Transport Protocol Secure) - An extension to the standard HTTP protocol that provides confidentiality by encrypting the traffic from the website. By default this protocol uses TCP port 443.

ICMP (Internet Control Message Protocol) - Allows the gateway or destination host to communicate with the source host. For example, to report a processing error.

IGMP (Internet Group Management Protocol) - Allows hosts to notify their local switch or router that they want to receive transmissions assigned to a specific multicast group.

IP (Internet Protocol) - A protocol used to send data over a network.

IP Address - The address used to identify a computer or device on a network.

IPCONFIG - A Windows 2000 and XP utility that displays the IP address for a particular networking device.

IPSec (Internet Protocol Security) - A VPN protocol used to implement secure exchange of packets at the IP layer.

ISP (Internet Service Provider) - A company that provides access to the Internet.

Jumbo Frames - Enable transporting identical data in fewer frames. Jumbo Frames reduce overhead, lower processing time, and ensure fewer interrupts.

LAG (Link Aggregated Group) - Aggregates ports or VLANs into a single virtual port or VLAN.
WEBVIEW SWITCHES

LAN - The computers and networking products that make up your local network.

MAC (Media Access Control) Address - The unique address that a manufacturer assigns to each networking device.

Mask - A filter that includes or excludes certain values, for example parts of an IP address.

Mbps (MegaBits Per Second) - One million bits per second; a unit of measurement for data transmission.

MD5 (Message Digest 5) - An algorithm that produces a 128-bit hash. MD5 is a variation of MD4, and increases MD4 security. MD5 verifies the integrity of the communication and authenticates the origin of the communication.

MDI (Media Dependent Interface) - A cable used for end stations.

MDIX (Media Dependent Interface with Crossover) - A cable used for hubs and switches.

MIB (Management Information Base) - MIBs contain information describing specific aspects of network components.

Multicast - Transmits copies of a single packet to multiple ports.

Network - A series of computers or devices connected for the purpose of data sharing, storage, and/or transmission between users.

NMS (Network Management System) - An interface that provides a method of managing a system.

OID (Object Identifier) - Used by SNMP to identify managed objects. In the SNMP Manager/Agent network management paradigm, each managed object must have an OID to identify it.

Packet - A unit of data sent over a network.

Ping (Packet INternet Groper) - An Internet utility used to determine whether a particular IP address is online.

Policing - Determines if traffic levels are within a specified profile. Policing manages the maximum traffic rate used to send or receive packets on an interface.

Port - The connection point on a computer or networking device used for plugging in cables or adapters.

Port Mirroring - Monitors and mirrors network traffic by forwarding copies of incoming and outgoing packets from one port to a monitoring port.

Power over Ethernet (PoE) - A technology enabling an Ethernet network cable to deliver both data and power.
WebView Switches

QoS (Quality of Service) - Provides policies that contain sets of filters (rules). QoS allows network managers to decide how and what network traffic is forwarded according to priorities, application types, and source and destination addresses.

RADIUS (Remote Authentication Dial-In User Service) - A protocol that uses an authentication server to control network access.

RJ-45 (Registered Jack-45) - An Ethernet connector that holds up to eight wires.

RMON (Remote Monitoring) - Provides network information to be collected from a single workstation.

Router - A networking device that connects multiple networks together.

RSTP (Rapid Spanning Tree Protocol) - Detects and uses network topologies that allow a faster convergence of the spanning tree, without creating forwarding loops.

Server - Any computer whose function in a network is to provide user access to files, printing, communications, and other services.

SMTP (Simple Mail Transfer Protocol) - The standard e-mail protocol on the Internet.

SNMP (Simple Network Management Protocol) - A widely used network monitoring and control protocol.

SSH - Secure Shell. A utility that uses strong authentication and secure communications to log in to another computer over a network.

SSL (Secure Socket Layer) - Encryption technology for the Internet used to provide secure transactions, such as the transmission of credit card numbers for e-commerce.

Static IP Address - A fixed address assigned to a computer or device that is connected to a network.

STP (Spanning Tree Protocol) - Prevents loops in network traffic. The Spanning Tree Protocol (STP) provides tree topography for any arrangement of bridges. STP provides one path between end stations on a network, eliminating loops.

Subnet (Sub-network) - Subnets are portions of a network that share a common address component. In TCP/IP networks, devices that share a prefix are part of the same subnet. For example, all devices with a prefix of 157.100.100.100 are part of the same subnet.

Subnet Mask - An address code that determines the size of the network.

Switch - Filters and forwards packets between LAN segments. Switches support any packet protocol type.
WebView Switches

TACACS+ (Terminal Access Controller Access Control System Plus) - Proprietary Cisco enhancement to Terminal Access Controller Access Control System (TACACS). Provides additional support for authentication, authorization, and accounting.

TCP (Transmission Control Protocol) - A network protocol for transmitting data that requires acknowledgement from the recipient of data sent.

TCP/IP (Transmission Control Protocol/Internet Protocol) - A set of instructions PCs use to communicate over a network.

Telnet - A user command and TCP/IP protocol used for accessing remote PCs.

TFTP (Trivial File Transfer Protocol) - A version of the TCP/IP FTP protocol that has no directory or password capability.

Throughput - The amount of data moved successfully from one node to another in a given time period.

Trunking - Link Aggregation. Optimizes port usage by linking a group of ports together to form a single trunk (aggregated groups).

TX Rate - Transmission Rate.

UDP (User Data Protocol) - Communication protocol that transmits packets but does not guarantee their delivery.

Upgrade - To replace existing software or firmware with a newer version.

Upload - To transmit a file over a network.

URL (Uniform Resource Locator) - The address of a file located on the Internet.

VLAN (Virtual Local Area Networks) - Logical subgroups that constitute a Local Area Network (LAN). This is done in software rather than defining a hardware solution.

WAN (Wide Area Network) - Networks that cover a large geographical area.

Wildcard Mask - Specifies which IP address bits are used, and which bits are ignored. A wild card mask of 255.255.255.255 indicates that no bit is important. A wildcard of 0.0.0.0 indicates that all the bits are important.

For example, if the destination IP address is 149.36.184.198 and the wildcard mask is 255.36.184.00, the first two bits of the IP address are used, while the last two bits are ignored.
Appendix E: Specifications

<table>
<thead>
<tr>
<th>Model</th>
<th>SRW224G4/SRW248G4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ports</td>
<td>24 or 48 RJ-45 connectors for 10BASE-T and 100BASE-T, 4 RJ-45 connectors for 10BASE-T/100BASE-TX/1000BASE-T with 2 shared SFP slots Auto MDI/MDI-X Autonegotiate/Manual setting</td>
</tr>
<tr>
<td>Cabling Type</td>
<td>UTP CAT 5 or better for 10BASE-T/100BASE-TX, UTP CAT 5e or better for 1000BASE-T</td>
</tr>
<tr>
<td>LEDs</td>
<td>Power, Link/Act, Speed</td>
</tr>
</tbody>
</table>

Performance

<table>
<thead>
<tr>
<th>Switching Capacity</th>
<th>12.8 (SRW224G4) or 17.6 (SRW248G4) Gig non-blocking</th>
</tr>
</thead>
<tbody>
<tr>
<td>MAC table size</td>
<td>8K</td>
</tr>
<tr>
<td>Number of VLANs</td>
<td>256 - Static</td>
</tr>
</tbody>
</table>

Management

<table>
<thead>
<tr>
<th>Web User Interface</th>
<th>Built-in Web UI for easy browser-based configuration (HTTP/HTTPS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SNMP</td>
<td>SNMP version 1, 2, 3 with support for traps</td>
</tr>
<tr>
<td>SNMP MIBs</td>
<td>RFC1213 MIB-2, RFC2863 Interface MIB, RFC2665 Ether-like MIB, RFC1493 Bridge MIB, RFC2674 Extended Bridge MIB (P-bridge, Q-bridge), RFC2819 RMON MIB (groups 1,2,3,9 only), RFC 2618 RADIUS Client MIB</td>
</tr>
<tr>
<td>RMON</td>
<td>Embedded Remote Monitoring (RMON) software agent supports four RMON groups (history, statistics, alarms, and events) for enhanced traffic management, monitoring, and analysis</td>
</tr>
</tbody>
</table>
WebView Switches

<table>
<thead>
<tr>
<th>Firmware Upgrade</th>
<th>Web Browser upgrade (HTTP)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TFTP upgrade</td>
</tr>
<tr>
<td>Port Mirroring</td>
<td>Traffic on a port can be mirrored to another port for analysis with a network analyzer or RMON probe</td>
</tr>
<tr>
<td>Other Management</td>
<td>RFC854 Telnet (Menu-driven configuration)</td>
</tr>
<tr>
<td></td>
<td>Secure Shell (SSH) and Telnet Management</td>
</tr>
<tr>
<td></td>
<td>Telnet Client</td>
</tr>
<tr>
<td></td>
<td>SSL security for Web UI</td>
</tr>
<tr>
<td></td>
<td>Switch Audit Log</td>
</tr>
<tr>
<td></td>
<td>DHCP Client</td>
</tr>
<tr>
<td></td>
<td>BootP</td>
</tr>
<tr>
<td></td>
<td>SNTP</td>
</tr>
<tr>
<td></td>
<td>Xmodem upgrade</td>
</tr>
<tr>
<td></td>
<td>Cable Diagnostics</td>
</tr>
<tr>
<td></td>
<td>PING</td>
</tr>
<tr>
<td></td>
<td>Traceroute</td>
</tr>
<tr>
<td></td>
<td>Syslog</td>
</tr>
</tbody>
</table>

Security

<table>
<thead>
<tr>
<th>IEEE 802.1x</th>
<th>802.1x - RADIUS Authentication. MD5 Encryption</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Control</td>
<td>Filtering: MAC-based</td>
</tr>
</tbody>
</table>

Availability

<table>
<thead>
<tr>
<th>Link Aggregation</th>
<th>Link Aggregation using IEEE 802.3ad LACP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Up to 8 ports in up to 8 trunks</td>
</tr>
<tr>
<td>Storm Control</td>
<td>Broadcast, Multicast, and Unknown Unicast</td>
</tr>
<tr>
<td>Spanning Tree</td>
<td>IEEE 802.1d Spanning Tree, IEEE 802.1s Multiple Spanning Tree, IEEE 802.1w Rapid Spanning Tree, Fast Linkover</td>
</tr>
</tbody>
</table>
WebView Switches

<table>
<thead>
<tr>
<th>Specification</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IGMP Snooping</td>
<td>IGMP (v1/v2) snooping provides for fast client joins and leaves of multicast streams and limits bandwidth-intensive video traffic to only the requestors.</td>
</tr>
<tr>
<td>QoS</td>
<td></td>
</tr>
<tr>
<td>Priority levels</td>
<td>4 Hardware queues</td>
</tr>
<tr>
<td>Scheduling</td>
<td>Priority Queueing and Weighted Round Robin (WRR)</td>
</tr>
<tr>
<td>Class of Service</td>
<td>Port-based</td>
</tr>
<tr>
<td></td>
<td>802.1p VLAN priority based</td>
</tr>
<tr>
<td></td>
<td>IP TOS/DSCP based</td>
</tr>
<tr>
<td></td>
<td>IPv4 & IPv6 Traffic Class based COS</td>
</tr>
<tr>
<td>Rate Limiting</td>
<td>Ingress Policer, Egress Shaper</td>
</tr>
<tr>
<td>Layer 2</td>
<td></td>
</tr>
<tr>
<td>VLAN</td>
<td>Port-based and 802.1q based VLANs</td>
</tr>
<tr>
<td></td>
<td>Private VLAN Edge (PVE)</td>
</tr>
<tr>
<td></td>
<td>Management VLAN</td>
</tr>
<tr>
<td>HOL Blocking</td>
<td>Head of line blocking prevention</td>
</tr>
<tr>
<td>Mini jumbo frame</td>
<td>Supports frames up to 1600 bytes</td>
</tr>
<tr>
<td>Dynamic VLAN</td>
<td>GVRP - Dynamic VLAN Registration</td>
</tr>
<tr>
<td>Standards</td>
<td>802.3i 10BASE-T Ethernet, 802.3u 100BASE-TX Fast Ethernet, 802.3ab 1000BASE-T Gigabit Ethernet, 802.3z Gigabit Ethernet, 802.3x Flow Control</td>
</tr>
<tr>
<td>Environmental</td>
<td></td>
</tr>
<tr>
<td>Dimensions</td>
<td>SRW224G4 - 16.93" x 1.75" x 7.97" (430 x 44 x 203 mm)</td>
</tr>
<tr>
<td>H x W x D</td>
<td>SRW248G4 - 16.93" x 1.75" x 13.78" (430 x 44 x 350 mm)</td>
</tr>
<tr>
<td>Specifications</td>
<td>Details</td>
</tr>
<tr>
<td>--------------------------------------</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>Weight</td>
<td>SRW224G4 - 4.41 lb (2 kg)</td>
</tr>
<tr>
<td></td>
<td>SRW248G4 - 8.60 lb (3.9 kg)</td>
</tr>
<tr>
<td>Power</td>
<td>Internal Switching Power</td>
</tr>
<tr>
<td>Certification</td>
<td>FCC Part15 Class A, CE Class A, UL, cUL, CE mark, CB</td>
</tr>
<tr>
<td>Operating Temp.</td>
<td>0 to 40°C (32 to 104°F)</td>
</tr>
<tr>
<td>Storage Temp.</td>
<td>-20 to 70°C (-4 to 158°F)</td>
</tr>
<tr>
<td>Operating Humidity</td>
<td>10% to 90%</td>
</tr>
<tr>
<td>Storage Humidity</td>
<td>10% to 95%</td>
</tr>
</tbody>
</table>
LIMITED WARRANTY

Linksys warrants to You that, for a period of five years (the "Warranty Period"), your Linksys Product will be substantially free of defects in materials and workmanship under normal use. Your exclusive remedy and Linksys' entire liability under this warranty will be for Linksys at its option to repair or replace the Product or refund Your purchase price less any rebates. This limited warranty extends only to the original purchaser.

If the Product proves defective during the Warranty Period call Linksys Technical Support in order to obtain a Return Authorization Number, if applicable. BE SURE TO HAVE YOUR PROOF OF PURCHASE ON HAND WHEN CALLING. If You are requested to return the Product, mark the Return Authorization Number clearly on the outside of the package and include a copy of your original proof of purchase. RETURN REQUESTS CANNOT BE PROCESSED WITHOUT PROOF OF PURCHASE. You are responsible for shipping defective Products to Linksys. Linksys pays for UPS Ground shipping from Linksys back to You only. Customers located outside of the United States of America and Canada are responsible for all shipping and handling charges.

ALL IMPLIED WARRANTIES AND CONDITIONS OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE ARE LIMITED TO THE DURATION OF THE WARRANTY PERIOD. ALL OTHER EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF NON-INFRINGEMENT, ARE DISCLAIMED. Some jurisdictions do not allow limitations on how long an implied warranty lasts, so the above limitation may not apply to You. This warranty gives You specific legal rights, and You may also have other rights which vary by jurisdiction.

This warranty does not apply if the Product (a) has been altered, except by Linksys, (b) has not been installed, operated, repaired, or maintained in accordance with instructions supplied by Linksys, or (c) has been subjected to abnormal physical or electrical stress, misuse, negligence, or accident. In addition, due to the continual development of new techniques for intruding upon and attacking networks, Linksys does not warrant that the Product will be free of vulnerability to intrusion or attack.

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL LINKSYS BE LIABLE FOR ANY LOST DATA, REVENUE OR PROFIT, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL, INCIDENTAL OR PUNITIVE DAMAGES, REGARDLESS OF THE THEORY OF LIABILITY (INCLUDING NEGLIGENCE), ARISING OUT OF OR RELATED TO THE USE OF OR INABILITY TO USE THE PRODUCT (INCLUDING ANY SOFTWARE), EVEN IF LINKSYS HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. IN NO EVENT WILL LINKSYS' LIABILITY EXCEED THE AMOUNT PAID BY YOU FOR THE PRODUCT. The foregoing limitations will apply even if any warranty or remedy provided under this Agreement fails of its essential purpose. Some jurisdictions do not allow the exclusion or limitation of incidental or consequential damages, so the above limitation or exclusion may not apply to You.

Please direct all inquiries to: Linksys, P.O. Box 18558, Irvine, CA 92623.
Appendix G: Regulatory Information

FCC Statement

This product has been tested and complies with the specifications for a Class B digital device, pursuant to Part 15 of the FCC Rules. These limits are designed to provide reasonable protection against harmful interference in a residential installation. This equipment generates, uses, and can radiate radio frequency energy and, if not installed and used according to the instructions, may cause harmful interference to radio communications. However, there is no guarantee that interference will not occur in a particular installation. If this equipment does cause harmful interference to radio or television reception, which is found by turning the equipment off and on, the user is encouraged to try to correct the interference by one or more of the following measures:

- Reorient or relocate the receiving antenna
- Increase the separation between the equipment or devices
- Connect the equipment to an outlet other than the receiver's
- Consult a dealer or an experienced radio/TV technician for assistance

Safety Notices

Caution: To reduce the risk of fire, use only No.26 AWG or larger telecommunication line cord.
Do not use this product near water, for example, in a wet basement or near a swimming pool.
Avoid using this product during an electrical storm. There may be a remote risk of electric shock from lightning.

Industry Canada (Canada)

This device complies with Industry Canada ICES-003 rule.
Cet appareil est conforme à la norme NMB003 d'Industrie Canada.

IC Statement

Operation is subject to the following two conditions:
1. This device may not cause interference and
2. This device must accept any interference, including interference that may cause undesired operation of the device.
WebView Switches

Règlement d’Industry Canada

Le fonctionnement est soumis aux conditions suivantes:
1. Ce périphérique ne doit pas causer d’interférences;
2. Ce périphérique doit accepter toutes les interférences reçues, y compris celles qui risquent d’entraîner un fonctionnement indésirable.

This document contains important information for users with regards to the proper disposal and recycling of Linksys products. Consumers are required to comply with this notice for all electronic products bearing the following symbol:

English

Environmental Information for Customers in the European Union

European Directive 2002/96/EC requires that the equipment bearing this symbol on the product and/or its packaging must not be disposed of with unsorted municipal waste. The symbol indicates that this product should be disposed of separately from regular household waste streams. It is your responsibility to dispose of this and other electric and electronic equipment via designated collection facilities appointed by the government or local authorities. Correct disposal and recycling will help prevent potential negative consequences to the environment and human health. For more detailed information about the disposal of your old equipment, please contact your local authorities, waste disposal service, or the shop where you purchased the product.

Ceština/Czech

Informace o ochraně životního prostředí pro zákazníky v zemích Evropské unie

Evropská směrnice 2002/96/ES zakazuje, aby zařízení označené tímto symbolem na produktu anebo na obalu bylo likvidováno s netříděným komunálním odpadem. Tento symbol udává, že daný produkt musí být likvidován odděleně od běžného komunálního odpadu. Odpovídá za likvidaci tohoto produktu a dalších elektrických a elektronických zařízení prostřednictvím určených sběrných míst stanovených vládou nebo městskými úřady. Správná likvidace a recyklace pomáhá předcházet potenciálním negativním dopadům na životní prostředí a lidské zdraví. Podrobnější informace o likvidaci starého vybavení si laskavě vyžádejte od místních úřadů, podniku zabyvajícího se likvidací komunálních odpadů nebo obchodu, kde jste produkt zakoupili.
Appendix G: Regulatory Information

Web� View Switches

Dansk/Danish

Miljøinformation for kunder i EU

Deutsch/German

Umweltinformation für Kunden innerhalb der Europäischen Union

Eesti/Estonian

Keskonnarahaline informatsioon Euroopa Liidus asuvatele klientidele

WebView Switches

Français/French
Informations environnementales pour les clients de l’Union européenne

La directive européenne 2002/96/CE exige que l’équipement sur lequel est apposé ce symbole sur le produit et/ou son emballage ne soit pas jeté avec les autres ordures ménagères. Ce symbole indique que le produit doit être éliminé dans un circuit distinct de celui pour les déchets des ménages. Il est de votre responsabilité de jeter ce matériel ainsi que tout autre matériel électrique ou électronique par les moyens de collecte indiqués par le gouvernement et les pouvoirs publics des collectivités territoriales. L’élimination et le recyclage en bonne et due forme ont pour but de lutter contre l’impact néfastes potentiel de ce type de produits sur l’environnement et la santé publique. Pour plus d’informations sur le mode d’élimination de votre ancien équipement, veuillez prendre contact avec les pouvoirs publics locaux, le service de traitement des déchets, ou l’endroit où vous avez acheté le produit.

Italiano/Italian
Informazioni relative all’ambiente per i clienti residenti nell’Unione Europea

La direttiva europea 2002/96/EC richiede che le apparecchiature contrassegnate con questo simbolo sul prodotto e/o sull’imballaggio non siano smaltite insieme ai rifiuti urbani non differenziati. Il simbolo indica che questo prodotto non deve essere smaltito insieme ai normali rifiuti domestici. È responsabilità del proprietario smaltire sia questi prodotti sia le altre apparecchiature elettriche ed elettroniche mediante le specifiche strutture di raccolta indicate dal governo o dagli enti pubblici locali. Il corretto smaltimento ed il riciclaggio aiutano a prevenire conseguenze potenzialmente negative per l’ambiente e per la salute dell’essere umano. Per ricevere informazioni più dettagliate circa lo smaltimento delle vecchie apparecchiature in Vostro possesso, Vi invitiamo a contattare gli enti pubblici di competenza, il servizio di smaltimento rifiuti o il negozio nel quale avete acquistato il prodotto.

Latviešu valoda/Latvian
Ekoloģiska informācija klientiem Eiropas Savienības juridiskajā

Lietuvių kalba/Lithuanian
Aplinkosaugos informacija, skirta Europos Sąjungos vartotojams

Europos direktyva 2002/96/EB numato, kad įranga, kuri ir (arba) kuriose pakuotėse yra pažymėta šiuo simboliu, negalima šalinti kartu su nerešiotomis komunalinėmis atliekoms. Šis simbolis rodo, kad gaminį reikia šalinti atskirai nuo bendro būtinų atliekų srauto. Jūs privalote užtikrinti, kad šį ir kita elektros ar elektroninė įranga būtų šalinama per tam tikras nacionalinės ar vietinės valdžios nustatytas atliekų rinkimo sistemas. Tinkamai šalinant ir perdirbant atliekus, būtina išvengti galimos žalos aplinkai ir žmonių sveikatai. Daugiau informacijos apie jūsų senos įrangos šalinimą gali pateikti vietinės valdžios institucijos, atliekų šalinių tarnybos arba pardavėjus, kurie įsigijote šį gaminį.

Malti/Maltese
Informazzjoni Ambjentali għall-Klijenti fl-Unjoni Ewropea

Magyar/Hungarian
Környezetvédelmi információ az európai uniós vásárlók számára

A 2002/96/EC számú európai uniós irányelv megkíványa, hogy azokat a termékeket, amelyeken, és/vagy amelyek csomagolásán az alábbi címke megjelent, tilos a többi szelektáltatás lakossági hulladékkal együtt kidobni. A címke azt jelöli, hogy az adott termék kidobásakor a szokványos háztartási hulladékszállítási rendszerektől elkülönített eljárást kell alkalmazni. Az Ön felelőssége, hogy ezt, és más elektromos és elektronikus berendezéseit a kormányzati vagy a helyi hatóságok által kijelölt gyújtórendszereken keresztül számlálja fel. A megfelelő hulladékdolgozás segít a környezethez és az emberi egészséghez potenciálisan ártalmas negatív hatások megelőzésében. Ha elavult berendezéseinek felszámolásához további részesítés információra van szüksége, kérjük, lépjen kapcsolatra a helyi hatóságokkal, a hulladékdolgozási szolgálattal, vagy azzal üzlettel, ahol a terméket vásárolta.
Appendix G: Regulatory Information

Nederlands/Dutch

Milieu-informatie voor klanten in de Europese Unie

De Europese Richtlijn 2002/96/EC schrijft voor dat apparatuur die is voorzien van dit symbool op het product of de verpakking, niet mag worden ingezameld met niet-gescheiden huishoudelijk afval. Dit symbool geeft aan dat het product apart moet worden ingezameld. U bent zelf verantwoordelijk voor de vernietiging van deze en andere elektrische en elektronische apparatuur via de daarvoor door de landelijke of plaatselijke overheid aangewezen inzamelingskanalen. De juiste vernietiging en recycling van deze apparatuur voorkomt mogelijke negatieve gevolgen voor het milieu en de gezondheid. Voor meer informatie over het vernietigen van uw oude apparatuur neemt u contact op met de plaatselijke autoriteiten of afvalverwerkingsdienst, of met de winkel waar u het product hebt aangeschaft.

Norsk/Norwegian

Miljøinformasjon for kunder i EU

Polski/Polish

Informacja dla klientów w Unii Europejskiej o przepisach dotyczących ochrony środowiska

Dyrektywa Europejska 2002/96/EC wymaga, aby sprzęt oznaczony symbolem znajdującym się na produkcie i/lub jego opakowaniu nie był wyrzucany razem z innymi niesortowanymi odpadami komunalnymi. Symbol ten wskazuje, że produkt nie powinien być usuwany razem ze zwykłymi odpadami z gospodarstw domowych. Na Państwu spoczywa obowiązek wyrzucania tego i innych urządzeń elektrycznych oraz elektronicznych w punktach odbioru wyznaczonych przez władze krajowe lub lokalne. Pozbywanie się sprzętu we właściwy sposób i jego recykling pomaga zapobiec potencjalnie negatywnym konsekwencjom dla środowiska i zdrowia ludzkiego. W celu uzyskania szczegółowych informacji o usuwaniu starego sprzętu, prosimy zwrócić się do lokalnych władz, służb oczyszczania miasta lub sklepu, w którym produkt został nabyty.

Português/Portuguese

Informação ambiental para clientes da União Europeia

A Directiva Europeia 2002/96/CE exige que o equipamento que exibe este simbolo no produto e/ou na sua embalagem não seja eliminado junto com os resíduos municipais não separados. O símbolo indica que este produto deve ser eliminado separadamente dos resíduos domésticos regulares. É da sua responsabilidade eliminar este e qualquer outro equipamento elétrico e eletrónico através das instalações de recolha designadas pelas autoridades governamentais ou locais. A eliminação e reciclagem correctas ajudarão a prevenir as consequências negativas para o ambiente e para a saúde humana. Para obter informações mais detalhadas sobre a forma de eliminar o seu equipamento antigo, contacte as autoridades locais, os serviços de eliminação de resíduos ou o estabelecimento comercial onde adquiriu o produto.

Slovenčina/Slovak

Informácie o ochrane životného prostredia pre zákazníkov v Európskej únií

Podľa európskej smernice 2002/96/ES zariadenie s týmto symbolem na produkte a/alebo jeho balení nesmie byť likvidované spolu s netrideným komunálnym odpadom. Symbol znamená, že produkt by sa mal likvidovať oddelene od bežného odpadu z domácností. Je vašou povinnosťou likvidovať toto i ostatné elektrické a elektronické zariadenia prostredníctvom specializovaných zbierkov zariadení určených vládou alebo miestnymi orgánmi. Správna likvidácia a recykľácia pomôže zabrániť pripadným negatívnym dopadom na životné prostredie a zdravie ľudí. Ak máte záujem o podrobnejšie informácie o likvidácii starého zariadenia, obráťte sa, prosím, na miestne orgány, organizácie zaobstarávajúce sa likvidáciou odpadov alebo obchod, v ktorom ste si produkt zakúpili.

Slovenčina/Slovene

Okoljske informacije za stranke v Evropski uniji

WebView Switches

Suomi/Finnish

Ympäristöä koskevia tietoja EU-alueen asiakkaille

Svenska/Swedish

Miljöinformation för kunder i Europeiska unionen

For more information, visit www.linksys.com.
Appendix H: Contact Information

Need to contact Linksys?
Visit us online for information on the latest products and updates to your existing products at:

http://www.linksys.com or ftp.linksys.com

Can’t find information about a product you want to buy on the web? Do you want to know more about networking with Linksys products? Give our advice line a call at:

800-546-5797 (LINKSYS)
949-823-3002

Or fax your request in to:

If you experience problems with any Linksys product, you can call us at:
800-326-7114
Don’t wish to call? You can e-mail us at:
support@linksys.com

If any Linksys product proves defective during its warranty period, you can call the Linksys Return Merchandise Authorization department for obtaining a Return Authorization Number at:
949-823-3000
(Details on Warranty and RMA issues can be found in the Warranty Information section in this Guide.)